842 research outputs found

    Probing the QCD Equation of State

    Get PDF
    We propose a novel quasiparticle interpretation of the equation of state of deconfined QCD at finite temperature. Using appropriate thermal masses, we introduce a phenomenological parametrisation of the onset of confinement in the vicinity of the phase transition. Lattice results of bulk thermodynamic quantities are well reproduced, the extension to small quark chemical potential is also successful. We then apply the model to dilepton production and charm suppression in ultrarelativistic heavy-ion collisions.Comment: 6 pages, 8 figures. Invited talk presented by R. A. Schneider at the XVI International Conference on Particles and Nuclei (PANIC02), Osaka, Japan, September 30 - October 4, 200

    Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments

    Get PDF
    During a study of indoor fungi, 145 isolates belonging to Chaetomiaceae were cultured from air, swab and dust samples from 19 countries. Based on the phylogenetic analyses of DNA-directed RNA polymerase II second largest subunit (rpb2), ÎČ-tubulin (tub2), ITS and 28S large subunit (LSU) nrDNA sequences, together with morphological comparisons with related genera and species, 30 indoor taxa are recognised, of which 22 represent known species, seven are described as new, and one remains to be identified to species level. In our collection, 69 % of the indoor isolates with six species cluster with members of the Chaetomium globosum species complex, representing Chaetomium sensu stricto. The other indoor species fall into nine lineages that are separated from each other with several known chaetomiaceous genera occurring among them. No generic names are available for five of those lineages, and the following new genera are introduced here: Amesia with three indoor species, Arcopilus with one indoor species, Collariella with four indoor species, Dichotomopilus with seven indoor species and Ovatospora with two indoor species. The generic concept of Botryotrichum is expanded to include Emilmuelleria and the chaetomium-like species B. muromum (= Ch. murorum) in which two indoor species are included. The generic concept of Subramaniula is expanded to include several chaetomium-like taxa as well as one indoor species. Humicola is recognised as a distinct genus including two indoor taxa. According to this study, Ch. globosum is the most abundant Chaetomiaceae indoor species (74/145), followed by Ch. cochliodes (17/145), Ch. elatum (6/145) and B. piluliferum (5/145). The morphological diversity of indoor Chaetomiaceae as well as the morphological characteristics of the new genera are described and illustrated. This taxonomic study redefines the generic concept of Chaetomium and provides new insight into the phylogenetic relationships among different genera within Chaetomiaceae

    Mineralogy and geochemistry of reservoir and non-reservoir chalk from the Norwegian continental shelf

    Get PDF
    A first and detailed study of the geochemistry and mineralogy characterizing the North Sea reservoir and non-reservoir chalk is provided in this work. The study is based on 185 cores from exploration and development wells in the North Sea. The cores related to reservoir development have different flooding status – unflooded or waterflooded at various temperatures – and are directly sampled from the Ekofisk field. Optical petrography shows a micritic carbonate matrix, with grains represented by various microfossils such as foraminifers and sponge spicules. Scanning electron microscopy (SEM) reveals post-depositional calcite precipitation and cementation. Dolomite is found only in the reservoir samples, but it is discussed as a diagenetic feature, unrelated to the hydrocarbon content or EOR exposure. The non-carbonate minerals observed with BSE-SEM and XRD include mostly quartz but also smectite, illite, kaolinite, mica, and pyrite. The abundance of clastic input varies, and there is a clear decrease in porosity stratigraphically downwards, with stronger cementation and higher compaction. ή13C reflects primary trends for Upper Cretaceous stages while ή18O in all samples is lower than the secular global isotopic values for this period. However, the ή18O values are not sufficiently low to imply a strong diagenetic overprint, but rather suggest the influence of a secondary fluid. This fluid cannot be a hydrocarbon-rich one, nor EOR fluids, as non-reservoir samples, as well as flooded and unflooded reservoir samples show very similar stable isotope values.publishedVersio

    Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms

    Full text link
    We present a novel method for reducing the inhomogeneous frequency broadening in the hyperfine splitting of the ground state of optically trapped atoms. This reduction is achieved by the addition of a weak light field, spatially mode-matched with the trapping field and whose frequency is tuned in-between the two hyperfine levels. We experimentally demonstrate the new scheme with Rb 85 atoms, and report a 50-fold narrowing of the rf spectrum

    White Light Interferometry for Quantitative Surface Characterization in Ion Sputtering Experiments

    Full text link
    White light interferometry (WLI) can be used to obtain surface morphology information on dimensional scale of millimeters with lateral resolution as good as ~1 {\mu}m and depth resolution down to 1 nm. By performing true three-dimensional imaging of sample surfaces, the WLI technique enables accurate quantitative characterization of the geometry of surface features and compares favorably to scanning electron and atomic force microscopies by avoiding some of their drawbacks. In this paper, results of using the WLI imaging technique to characterize the products of ion sputtering experiments are reported. With a few figures, several example applications of the WLI method are illustrated when used for (i) sputtering yield measurements and time-to-depth conversion, (ii) optimizing ion beam current density profiles, the shapes of sputtered craters, and multiple ion beam superposition and (iii) quantitative characterization of surfaces processed with ions. In particular, for sputter depth profiling experiments of 25Mg, 44Ca and 53Cr ion implants in Si (implantation energy of 1 keV per nucleon), the depth calibration of the measured depth profile curves determined by the WLI method appeared to be self-consistent with TRIM simulations for such projectile-matrix systems. In addition, high depth resolution of the WLI method is demonstrated for a case of a Genesis solar wind Si collector surface processed by gas cluster ion beam: a 12.5 nm layer was removed from the processed surface, while the transition length between the processed and untreated areas was 150 {\mu}m.Comment: Applied Surface Science, accepted: 7 pages and 8 figure

    The High Energy Telescope for STEREO

    Get PDF
    The IMPACT investigation for the STEREO Mission includes a complement of Solar Energetic Particle instruments on each of the two STEREO spacecraft. Of these instruments, the High Energy Telescopes (HETs) provide the highest energy measurements. This paper describes the HETs in detail, including the scientific objectives, the sensors, the overall mechanical and electrical design, and the on-board software. The HETs are designed to measure the abundances and energy spectra of electrons, protons, He, and heavier nuclei up to Fe in interplanetary space. For protons and He that stop in the HET, the kinetic energy range corresponds to ∌13 to 40 MeV/n. Protons that do not stop in the telescope (referred to as penetrating protons) are measured up to ∌100 MeV/n, as are penetrating He. For stopping He, the individual isotopes 3He and 4He can be distinguished. Stopping electrons are measured in the energy range ∌0.7–6 MeV

    Gaussian Tunneling Model of c-Axis Twist Josephson Junctions

    Full text link
    We calculate the critical current density JcJJ^J_c for c-axis Josephson tunneling between identical high temperature superconductors twisted an angle ϕ0\phi_0 about the c-axis. We model the tunneling matrix element squared as a Gaussian in the change of wavevector q parallel to the junction, <∣t(q)∣2>∝exp⁥(−q2a2/2π2σ2)<|t({\bf q})|^2>\propto\exp(-{\bf q}^2a^2/2\pi^2\sigma^2). The JcJ(ϕ0)/JcJ(0)J^J_c(\phi_0)/J^J_c(0) obtained for the s- and extended-s-wave order parameters (OP's) are consistent with the Bi2_2Sr2_2CaCu2_2O8+ÎŽ_{8+\delta} data of Li {\it et al.}, but only for strongly incoherent tunneling, σ2≄0.25\sigma^2\ge0.25. A dx2−y2d_{x^2-y^2}-wave OP is always inconsistent with the data. In addition, we show that the apparent conventional sum rule violation observed by Basov et al. might be understandable in terms of incoherent c-axis tunneling, provided that the OP is not dx2−y2d_{x^2-y^2}-wave.Comment: 6 pages, 6 figure

    On the thermal sunset diagram for scalar field theories

    Full text link
    We study the so-called `` sunset diagram'', which is one of two-loop self-energy diagrams, for scalar field theories at finite temperature. For this purpose, we first find the complete expression of the bubble diagram, the one-loop subdiagram of the sunset diagram, for arbitrary momentum. We calculate the temperature independent part and dependent part of the sunset diagram separately. For the former, we obtain the discontinuous part first and the finite continuous part next using a twice-subtracted dispersion relation. For the latter, we express it as a one-dimensional integral in terms of the bubble diagram. We also study the structure of the discontinuous part of the sunset diagram. Physical processes, which are responsible for it, are identified. Processes due to the scattering with particles in the heat bath exist only at finite temperature and generate discontinuity for arbitrary momentum, which is a remarkable feature of the two-loop diagrams at finite temperature. As an application of our result, we study the effect of the diagram on the spectral function of the sigma meson at finite temperature in the linear sigma model, which was obtained at one-loop order previously. At high temperature where the decay σ→ππ\sigma\to\pi\pi is forbidden, sigma acquires a finite width of the order of 10MeV10 {\rm MeV} while within the one-loop calculation its width vanishes. At low temperature, the spectrum does not deviate much from that at one-loop order. Possible consequences with including other two-loop diagrams are discussed.Comment: 30 page

    A Method for Detection and Classification of Events in Neural Activity

    Full text link

    Quasi-Particle Description of Strongly Interacting Matter: Towards a Foundation

    Get PDF
    We confront our quasi-particle model for the equation of state of strongly interacting matter with recent first-principle QCD calculations. In particular, we test its applicability at finite baryon densities by comparing with Taylor expansion coefficients of the pressure for two quark flavours. We outline a chain of approximations starting from the Phi-functional approach to QCD which motivates the quasi-particle picture.Comment: Aug 2006. 6 pp. Invited Talk given at Hot Quarks 2006, Villasimius, Sardinia, Italy, 15-20 May 200
    • 

    corecore