2,867 research outputs found

    Non-thermal radio emission from O-type stars III. Is Cyg OB2 No. 9 a wind-colliding binary?

    Full text link
    The star Cyg OB2 No. 9 is a well-known non-thermal radio emitter. Recent theoretical work suggests that all such O-stars should be in a binary or a multiple system. However, there is no spectroscopic evidence of a binary component. Re-analysis of radio observations from the VLA of this system over 25 years has revealed that the non-thermal emission varies with a period of 2.35+-0.02 yr. This is interpreted as a strong suggestion of a binary system, with the non-thermal emission arising in a wind-collision region. We derived some preliminary orbital parameters for this putative binary and revised the mass-loss rate of the primary star downward from previous estimates.Comment: 13 pages, 5 figures, includes online data, accepted by A&

    The Opacity of Spiral Galaxy Disks VI: Extinction, stellar light and color

    Get PDF
    In this paper we explore the relation between dust extinction and stellar light distribution in disks of spiral galaxies. Extinction influences our dynamical and photometric perception of disks, since it can distort our measurement of the contribution of the stellar component. To characterize the total extinction by a foreground disk, Gonzalez et al. (1998) proposed the ``Synthetic Field Method'' (SFM), which uses the calibrated number of distant galaxies seen through the foreground disk as a direct indication of extinction. The method is described in Gonzalez et al. (1998) and Holwerda et al. (2005a). To obtain good statistics, the method was applied to a set of HST/WFPC2 fields Holwerda et al. (2005b) and radial extinction profiles were derived, based on these counts. In the present paper, we explore the relation of opacity with surface brightness or color from 2MASS images, as well as the relation between the scalelengths for extinction and light in the I band. We find that there is indeed a relation between the opacity (A_I) and the surface brightness, particularly at the higher surface brightnesses. No strong relation between near infrared (H-J, H-K) color and opacity is found. The scalelengths of the extinction are uncertain for individual galaxies but seem to indicate that the dust distribution is much more extended than the stellar light. The results from the distant galaxy counts are also compared to the reddening derived from the Cepheids light-curves Freedman et al. (2001). The extinction values are consistent, provided the selection effect against Cepheids with higher values of A_I is taken into account. The implications from these relations for disk photometry, M/L conversion and galaxy dynamical modeling are briefly discussed.Comment: 9 pages, 2 tables, 10 figures, accepted by A&

    Radio emission models of Colliding-Wind Binary Systems

    Full text link
    We present calculations of the spatial and spectral distribution of the radio emission from a wide WR+OB colliding-wind binary system based on high-resolution hydrodynamical simulations and solutions to the radiative transfer equation. We account for both thermal and synchrotron radio emission, free-free absorption in both the unshocked stellar wind envelopes and the shocked gas, synchrotron self-absorption, and the Razin effect. The applicability of these calculations to modelling radio images and spectra of colliding-wind systems is demonstrated with models of the radio emission from the wide WR+OB binary WR147. Its synchrotron spectrum follows a power-law between 5 and 15 GHz but turns down to below this at lower and higher frequencies. We find that while free-free opacity from the circum-binary stellar winds can potentially account for the low-frequency turnover, models that also include a combination of synchrotron self-absorption and Razin effect are favoured. We argue that the high-frequency turn down is a consequence of inverse-Compton cooling. We present our resulting spectra and intensity distributions, along with simulated MERLIN observations of these intensity distributions. From these we argue that the inclination of the WR147 system to the plane of the sky is low. We summarise by considering extensions of the current model that are important for models of the emission from closer colliding wind binaries, in particular the dramatically varying radio emission of WR140.Comment: 18 pages, 18 figures; Accepted by Astronomy and Astrophysics, July 8, 200

    A Deep 150 MHz GMRT Survey in Eridanus

    Full text link
    We present results of a 150 MHz survey of a field centered on Epsilon Eridani, undertaken with the Giant Metrewave Radio Telescope (GMRT). The survey covers an area with a diameter of 2 deg, has a spatial resolution of 30" and a noise level of 3.1 mJy at the pointing centre. These observations provide a deeper and higher resolution view of the 150 MHz radio sky than the 7C survey (although the 7C survey covers a much larger area). A total of 113 sources were detected, most are point-like, but 20 are extended. We present an analysis of these sources, in conjunction with the NVSS (at 1.4 GHz) and VLSS (at 74 MHz). This process allowed us to identify 5 Ultra Steep Spectrum (USS) radio sources that are candidate high redshift radio galaxies (HzRGs). In addition, we have derived the dN/dS distribution for these observations and compare our results with other low frequency radio surveys.Comment: 12 pages, 11 figures, 3 tables, accepted for publication in MNRA

    Quasi-simultaneous XMM-Newton and VLA observation of the non-thermal radio emitter HD\168112 (O5.5III(f^+))

    Get PDF
    We report the results of a multiwavelength study of the non-thermal radio emitter HD168112 (O5.5III(f^+)). The detailed analysis of two quasi-simultaneous XMM-Newton and VLA observations reveals strong variability of this star both in the X-ray and radio ranges. The X-ray observations separated by five months reveal a decrease of the X-ray flux of ~30%. The radio emission on the other hand increases by a factor 5-7 between the two observations obtained roughly simultaneously with the XMM-Newton pointings. The X-ray data reveal a hard emission that is most likely produced by a thermal plasma at kT ~2-3 keV while the VLA data confirm the non-thermal status of this star in the radio waveband. Comparison with archive X-ray and radio data confirms the variability of this source in both wavelength ranges over a yet ill defined time scale. The properties of HD168112 in the X-ray and radio domain point towards a binary system with a significant eccentricity and an orbital period of a few years. However, our optical spectra reveal no significant changes of the star's radial velocity suggesting that if HD168112 is indeed a binary, it must be seen under a fairly low inclination.Comment: 17 pages, 11 figures (10 postscript + 1 gif

    MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension

    Get PDF
    Rationale: The pathogenesis of PAH remains unclear. The four microRNAs representing the miR-143 and miR-145 stem loops are genomically clustered. Objective: To elucidate the transcriptional regulation of the miR-143/145 cluster, and the role of miR-143 in PAH. Methods and Results: We identified the promoter region that regulates miR-143/145 miRNA expression in pulmonary artery smooth muscle cells (PASMCs). We mapped PAH-related signalling pathways, including estrogens receptor (ER), liver X factor/retinoic X receptor (LXR/RXR), TGF-β (Smads), and hypoxia (HRE) that regulated levels of all pri-miR stem loop transcription and resulting miRNA expression. We observed that miR-143-3p is selectively upregulated compared to miR-143-5p during PASMC migration. Modulation of miR-143 in PASMCs significantly altered cell migration and apoptosis. In addition, we found high abundance of miR-143-3p in PASMCs-derived exosomes. Using assays with pulmonary arterial endothelial cells (PAECs) we demonstrated a paracrine pro-migratory and pro-angiogenic effect of miR-143-3p enriched exosomes from PASMC. Quantitative PCR and in situ hybridisation showed elevated expression of miR-143 in calf models of PAH as well as in samples from PAH patients. Moreover, in contrast to our previous findings that had not supported a therapeutic role in vivo, we now demonstrate a protective role for miR-143 in experimental PH in vivo in miR-143-/- and antimiR143-3p-treated mice exposed to chronic hypoxia in both preventative and reversal settings. Conclusions: MiR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, while inhibition of miR-143-3p blocked experimental PH. Taken together these findings confirm an important role for the miR-143/145 cluster in PAH pathobiology

    Theoretical X-ray Line Profiles from Colliding Wind Binaries

    Full text link
    We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds, and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths (HWHM ~ 0.1 v_\infty) and definite blue- or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader (HWHM ~ v_\infty), flat-topped and unshifted. Local absorption can have a major effect on the observed profiles - in systems with mass-loss rates of a few times 10^{-6} Msol/yr the lower energy lines (E <~ 1 kev) are particularly affected. This generally results in blueward-skewed profiles, especially when the system is viewed through the dense wind of the primary. The orbital variation of the line widths and shifts is reduced in a low inclination binary. The extreme case is a binary with i = 0 degrees, for which we would expect no line profile variation.Comment: 15 pages, 15 figures. To appear in MNRA

    High-frequency climate variability in the Holocene from a coastal-dome ice core in east-central Greenland

    Get PDF
    An ice core drilled on the Renland ice cap in east-central Greenland contains a continuous climate record dating through the last glacial period. The Renland record is valuable because the coastal environment is more likely to reflect regional sea surface conditions compared to inland Greenland ice cores that capture synoptic variability. Here we present the δ¹⁸O water isotope record for the Holocene, in which decadal-scale climate information is retained for the last 8 kyr, while the annual water isotope signal is preserved throughout the last 2.6 kyr. To investigate regional climate information preserved in the water isotope record, we apply spectral analysis techniques to a 300-year moving window to determine the mean strength of varying frequency bands through time. We find that the strength of 15–20-year δ¹⁸O variability exhibits a millennial-scale signal in line with the well-known Bond events. Comparison to other North Atlantic proxy records suggests that the 15–20-year variability may reflect fluctuating sea surface conditions throughout the Holocene, driven by changes in the strength of the Atlantic Meridional Overturning Circulation. Additional analysis of the seasonal signal over the last 2.6 kyr reveals that the winter δ¹⁸O signal has experienced a decreasing trend, while the summer signal has predominantly remained stable. The winter trend may correspond to an increase in Arctic sea ice cover, which is driven by a decrease in total annual insolation, and is also likely influenced by regional climate variables such as atmospheric and oceanic circulation. In the context of anthropogenic climate change, the winter trend may have important implications for feedback processes as sea ice retreats in the Arctic
    corecore