49 research outputs found

    Geochemical fractionation of hazardous elements in fresh and drilled weathered South African coal fly ashes

    Get PDF
    The chemical reactions of dry-disposed ash dump, ingressed oxygen, carbon dioxide, and infiltrating rainwater affect mineralogical transformation, redistribution, and migration of chemical species. Composite samples of weathered coal fly ash taken at various depths and fresh coal fly ash were examined using organic petrographic, X-ray diffraction, X-ray fluorescence techniques, and successive extraction procedures. Results obtained show relative enrichment of glass, Al–Fe-oxides, calcite, and tridymite in the weathered CFA, but the fresh CFA is enriched in mullite, inertinite, maghemite, and ettringite. The enrichment of the weathered CFA in amorphous glass suggests higher reactivity when compared to fresh CFA. The evident depletion of soluble oxides in the weathered CFA is attributed to flushing of the soluble salts by percolating rainwater. Comparative enrichment of examined elements in water-soluble, exchangeable, reducible, and residual fractions of the weathered CFA is partly due to the slow release of adsorbed chemical species from the alumina-silicate matrix and diffusion from the deeper sections of the particles of coal fly ash. Sodium and potassium show enrichment in the oxidisable fraction of fresh CFA. The estimated mobility factor indicates mobility for Ca, Mg, Na, Se, Mo, and Sb and K, Sr, V, Cu, Cr, Se, and B in fresh and weathered CFAs, respectively

    Low Immune Activation in Early Pregnancy Is Associated With Preterm But Not Small-for-gestational-age Delivery in Women Infected With Human Immunodeficiency Virus Initiating Antiretroviral Therapy in Pregnancy: A Prematurity Immunology in HIV-infected Mothers and their Infants Study (PIMS) Case-control Study in Cape Town, South Africa.

    Get PDF
    BACKGROUND: Mechanisms underlying an association between human immunodeficiency virus (HIV) or antiretroviral therapy (ART) during pregnancy with risk of preterm delivery (PTD) and small-for-gestational-age (SGA) remain unclear. We explored the association between cellular immune activation and PTD or SGA in women with HIV initiating ART during or before pregnancy. METHODS: Women with HIV enrolled at median 15 weeks' gestation, were analyzed for immune markers, and matched on ART initiation timing (15 women initiated pre- and 15 during pregnancy). There were 30 PTD (delivery 25th percentile) as outcomes. Lymphocytes, monocytes, and dendritic cell populations and their activation status or functionality were enumerated by flow cytometry. RESULTS: PTD cases initiating ART in pregnancy showed decreased CD8+ T cell, monocyte, and dendritic cell activation; increased classical (CD14+CD16-) and intermediate (CD14+CD16+) monocyte frequencies; and decreased inflammatory monocytes (CD14dimCD16+) compared with SGA cases and term controls (all P < .05). Allowing for baseline viral load, the immune markers remained significantly associated with PTD but only in women initiating ART in pregnancy. Lower monocyte activation was predictive of PTD. TLR ligand-induced interferon-α and macrophage inflammatory protein-1β levels in monocytes were significantly lower in PTD women initiating ART in pregnancy. CONCLUSION: Low immune activation, skewing toward anti-inflammatory monocytes, and lower monocyte cytokine production in response to TLR ligand stimulation were associated with PTD but not SGA among women initiating ART in, but not before, pregnancy, suggesting immune anergy to microbial stimulation as a possible underlying mechanism for PTD in women initiating ART in pregnancy

    Slow progression of pediatric HIV associates with early CD8+ T cell PD-1 expression and a stem-like phenotype

    Get PDF
    HIV non-progression despite persistent viraemia is rare among antiretroviral therapy (ART)-naïve adults, but relatively common among ART-naïve children. Previous studies indicate that ART-naïve paediatric slow-progressors (PSPs) adopt immune evasion strategies similar to those described in the SIV natural hosts. However, the mechanisms underlying this immunophenotype are not well understood. In a cohort of early-treated infants who underwent analytical treatment interruption (ATI) after 12 months of ART, expression of PD-1 on CD8+ T-cells immediately prior to ATI was the main predictor of slow progression during ATI (r=0.77, p=0.002). PD-1+ CD8+ T-cell frequency was also negatively correlated with CCR5 (r=-0.74, p=0.005) and HLA-DR (r=-0.63, p=0.02) expression on CD4+ T-cells and predicted stronger HIV-specific T-lymphocyte responses. In the CD8+ T-cell compartment of PSPs, we identified an enrichment of stem-like TCF-1+PD-1+ memory cells, whereas paediatric progressors and viraemic adults were populated with a terminally exhausted PD-1+CD39+ population. TCF-1+PD-1+ expression on CD8+ T-cells was associated with higher proliferative activity (r=0.41, p=0.03) and stronger Gag-specific effector functionality. These data prompt the hypothesis that the proliferative burst potential of stem-like HIV-specific cytotoxic cells could be exploited in therapeutic strategies to boost the antiviral response and facilitate remission in early-ART-treated infants with a preserved and non-exhausted T-cell compartment

    Viral Evolution and Cytotoxic T Cell Restricted Selection in Acute Infant HIV-1 Infection

    Get PDF
    Antiretroviral therapy-naive HIV-1 infected infants experience poor viral containment and rapid disease progression compared to adults. Viral factors (e.g. transmitted cytotoxic T- lymphocyte (CTL) escape mutations) or infant factors (e.g. reduced CTL functional capacity) may explain this observation. We assessed CTL functionality by analysing selection in CTL-targeted HIV-1 epitopes following perinatal infection. HIV-1 gag, pol and nef sequences were generated from a historical repository of longitudinal specimens from 19 vertically infected infants. Evolutionary rate and selection were estimated for each gene and in CTL-restricted and non-restricted epitopes. Evolutionary rate was higher in nef and gag vs. pol, and lower in infants with non-severe immunosuppression vs. severe immunosuppression across gag and nef. Selection pressure was stronger in infants with non-severe immunosuppression vs. severe immunosuppression across gag. The analysis also showed that infants with non-severe immunosuppression had stronger selection in CTL-restricted vs. non-restricted epitopes in gag and nef. Evidence of stronger CTL selection was absent in infants with severe immunosuppression. These data indicate that infant CTLs can exert selection pressure on gag and nef epitopes in early infection and that stronger selection across CTL epitopes is associated with favourable clinical outcomes. These results have implications for the development of paediatric HIV-1 vaccines

    Paediatric non-progression following grandmother-to-child HIV transmission

    Get PDF
    Background In contrast to adult HIV infection, where slow disease progression is strongly linked to immune control of HIV mediated by protective HLA class I molecules such as HLA-B*81:01, the mechanisms by which a minority of HIV-infected children maintain normal-for-age CD4 counts and remain clinically healthy appear to be HLA class I-independent and are largely unknown. To better understand these mechanisms, we here studied a HIV-infected South African female, who remained a non-progressor throughout childhood. Results Phylogenetic analysis of viral sequences in the HIV-infected family members, together with the history of grand-maternal breast-feeding, indicated that, unusually, the non-progressor child had been infected via grandmother-to-child transmission. Although HLA-B*81:01 was expressed by both grandmother and grand-daughter, autologous virus in each subject encoded an escape mutation L188F within the immunodominant HLA-B*81:01-restricted Gag-specific epitope TL9 (TPQDLNTML, Gag 180–188). Since the transmitted virus can influence paediatric and adult HIV disease progression, we investigated the impact of the L188F mutant on replicative capacity. When this variant was introduced into three distinct HIV clones in vitro, viral replicative capacity was abrogated altogether. However, a virus constructed using the gag sequence of the non-progressor child replicated as efficiently as wildtype virus. Conclusion These findings suggest alternative sequences of events: the transmission of the uncompensated low fitness L188F to both children, potentially contributing to slow progression in both, consistent with previous studies indicating that disease progression in children can be influenced by the replicative capacity of the transmitted virus; or the transmission of fully compensated virus, and slow progression here principally the result of HLA-independent host-specific factors, yet to be defined

    Immunodominant HIV-1 Cd4+ T Cell Epitopes in Chronic Untreated Clade C HIV-1 Infection

    Get PDF
    Background: A dominance of Gag-specific CD8+ T cell responses is significantly associated with a lower viral load in individuals with chronic, untreated clade C human immunodeficiency virus type 1 (HIV-1) infection. This association has not been investigated in terms of Gag-specific CD4+ T cell responses, nor have clade C HIV-1–specific CD4+ T cell epitopes, likely a vital component of an effective global HIV-1 vaccine, been identified. Methodology/Principal Findings: Intracellular cytokine staining was conducted on 373 subjects with chronic, untreated clade C infection to assess interferon-gamma (IFN-γ) responses by CD4+ T cells to pooled Gag peptides and to determine their association with viral load and CD4 count. Gag-specific IFN-γ–producing CD4+ T cell responses were detected in 261/373 (70%) subjects, with the Gag responders having a significantly lower viral load and higher CD4 count than those with no detectable Gag response (p<0.0001 for both parameters). To identify individual peptides targeted by HIV-1–specific CD4+ T cells, separate ELISPOT screening was conducted on CD8-depleted PBMCs from 32 chronically infected untreated subjects, using pools of overlapping peptides that spanned the entire HIV-1 clade C consensus sequence, and reconfirmed by flow cytometry to be CD4+ mediated. The ELISPOT screening identified 33 CD4+ peptides targeted by 18/32 patients (56%), with 27 of the 33 peptides located in the Gag region. Although the breadth of the CD4+ responses correlated inversely with viral load (p = 0.015), the magnitude of the response was not significantly associated with viral load. Conclusions/Significance: These data indicate that in chronic untreated clade C HIV-1 infection, IFN-γ–secreting Gag-specific CD4+ T cell responses are immunodominant, directed at multiple distinct epitopes, and associated with viral control

    Discordant Impact of HLA on Viral Replicative Capacity and Disease Progression in Pediatric and Adult HIV Infection

    Get PDF
    HLA class I polymorphism has a major influence on adult HIV disease progression. An important mechanism mediating this effect is the impact on viral replicative capacity (VRC) of the escape mutations selected in response to HLA-restricted CD8+ T-cell responses. Factors that contribute to slow progression in pediatric HIV infection are less well understood. We here investigate the relationship between VRC and disease progression in pediatric infection, and the effect of HLA on VRC and on disease outcome in adult and pediatric infection. Studying a South African cohort of >350 ART-naïve, HIV-infected children and their mothers, we first observed that pediatric disease progression is significantly correlated with VRC. As expected, VRCs in mother-child pairs were strongly correlated (p = 0.004). The impact of the protective HLA alleles, HLA-B*57, HLA-B*58:01 and HLA-B*81:01, resulted in significantly lower VRCs in adults (p<0.0001), but not in children. Similarly, in adults, but not in children, VRCs were significantly higher in subjects expressing the disease-susceptible alleles HLA-B*18:01/45:01/58:02 (p = 0.007). Irrespective of the subject, VRCs were strongly correlated with the number of Gag CD8+ T-cell escape mutants driven by HLA-B*57/58:01/81:01 present in each virus (p = 0.0002). In contrast to the impact of VRC common to progression in adults and children, the HLA effects on disease outcome, that are substantial in adults, are small and statistically insignificant in infected children. These data further highlight the important role that VRC plays both in adult and pediatric progression, and demonstrate that HLA-independent factors, yet to be fully defined, are predominantly responsible for pediatric non-progression

    Human Immunodeficiency Virus-Specific CD8+ T-Cell Activity Is Detectable from Birth in the Majority of In Utero-Infected Infants▿

    No full text
    Human immunodeficiency virus (HIV)-infected infants in sub-Saharan Africa typically progress to AIDS or death by 2 years of life in the absence of antiretroviral therapy. This rapid progression to HIV disease has been related to immaturity of the adaptive immune response in infants. We screened 740 infants born to HIV-infected mothers and tracked development and specificity of HIV-specific CD8+ T-cell responses in 63 HIV-infected infants identified using gamma interferon enzyme-linked immunospot assays and intracellular cytokine staining. Forty-four in utero-infected and 19 intrapartum-infected infants were compared to 45 chronically infected children >2 years of age. Seventy percent (14 of 20) in utero-infected infants tested within the first week of life demonstrated HIV-specific CD8+ T-cell responses. Gag, Pol, and Nef were the principally targeted regions in chronic pediatric infection. However, Env dominated the overall response in one-third (12/36) of the acutely infected infants, compared to only 2/45 (4%) of chronically infected children (P = 0.00083). Gag-specific CD4+ T-cell responses were minimal to undetectable in the first 6 months of pediatric infection. These data indicate that failure to control HIV replication in in utero-infected infants is not due to an inability to induce responses but instead suggest secondary failure of adaptive immunity in containing this infection. Moreover, the detection of virus-specific CD8+ T-cell responses in the first days of life in most in utero-infected infants is encouraging for HIV vaccine interventions in infants
    corecore