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Abstract
HLA class I polymorphism has a major influence on adult HIV disease progression. An

important mechanism mediating this effect is the impact on viral replicative capacity (VRC)

of the escape mutations selected in response to HLA-restricted CD8+ T-cell responses.

Factors that contribute to slow progression in pediatric HIV infection are less well under-

stood. We here investigate the relationship between VRC and disease progression in pedi-

atric infection, and the effect of HLA on VRC and on disease outcome in adult and pediatric

infection. Studying a South African cohort of >350 ART-naïve, HIV-infected children and

their mothers, we first observed that pediatric disease progression is significantly correlated

with VRC. As expected, VRCs in mother-child pairs were strongly correlated (p = 0.004).

The impact of the protective HLA alleles, HLA-B*57, HLA-B*58:01 and HLA-B*81:01,
resulted in significantly lower VRCs in adults (p<0.0001), but not in children. Similarly, in

adults, but not in children, VRCs were significantly higher in subjects expressing the dis-

ease-susceptible alleles HLA-B*18:01/45:01/58:02 (p = 0.007). Irrespective of the subject,

VRCs were strongly correlated with the number of Gag CD8+ T-cell escape mutants driven

by HLA-B*57/58:01/81:01 present in each virus (p = 0.0002). In contrast to the impact of

VRC common to progression in adults and children, the HLA effects on disease outcome,
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that are substantial in adults, are small and statistically insignificant in infected children.

These data further highlight the important role that VRC plays both in adult and pediatric

progression, and demonstrate that HLA-independent factors, yet to be fully defined, are pre-

dominantly responsible for pediatric non-progression.

Author Summary

HLA plays a central role in determining disease outcome in adult HIV infection. A princi-
pal mechanism by which this HLA effect is mediated is via viral replicative capacity
(VRC), protective HLA alleles such as HLA-B�57 driving the selection of viral escape
mutants that reduce VRC. The factors contributing to the diverse disease progression rates
observed in infected children, however, remain uncertain. We here address the role of
HLA and VRC in pediatric disease progression in a large cohort in Kimberley, South
Africa. The findings highlight the consistent and important role of VRC in both adult and
pediatric progression. However, the impact of key HLA molecules in shaping disease out-
come in adult infection is notably absent in pediatric infection. Further studies of pediatric
infection therefore provide the potential to gain critical new insights into HLA-indepen-
dent mechanisms of HIV disease non-progression that predominate in HIV-infected but
healthy, ART-naive children. Understanding these mechanisms remains of direct rele-
vance to the development of future interventions to minimize HIV disease.

Introduction
HIV-infected children typically progress more rapidly to AIDS than adults [1]. Without treat-
ment, approximately 50% of HIV-1 infected children develop AIDS within a year and 50% will
die before their second birthday in sub-Saharan Africa [1]. However, a minority of perinatally
infected children remains asymptomatic through childhood despite being antiretroviral ther-
apy (ART) naive. The reasons for this variation in pediatric disease progression remain largely
unknown. Although pediatric HIV infections have accounted for only approximately 10% of
those arising in the global epidemic (http://www.avert.org/global-hiv-aids-epidemic.htm), they
provide the potential to understand new mechanisms by which HIV disease can be avoided
following infection. This remains an important goal of HIV research, with direct relevance to
vaccine design.

The central role of HLA class I molecules in control of adult HIV infection is underlined by
several genome-wide association studies [2–4]. These are consistent with earlier work showing
characteristic rates of disease progression, depending upon the particular HLA molecules
expressed [5]. In African populations, HLA-B�57, HLA-B�58:01 and HLA-B�81:01 are the
class I molecules most consistently associated with slow progression to HIV disease and
HLA-B�18:01, HLA-B�45:01 and HLA-B�58:02 the HLA alleles most strongly associated with
high viral load and rapid disease progression [2, 6–11].

Several distinct mechanisms are likely to contribute to the immune control or lack of
immune control of HIV mediated by these particular HLA-B alleles [5]. One important mecha-
nism is believed to be the impact of selection pressure imposed on HIV by Gag-specific CD8
+ T cell responses. Viral escape mutants selected to evade the Gag-specific responses restricted
by protective HLA alleles tend to reduce viral replicative capacity [12–20]. Although in some
cases compensatory mutations have been selected that almost cancel out the fitness cost of the
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escape mutant [21], in most cases the compensatory mutations only partially recover the
reduction in viral replicative capacity resulting from selection of the escape mutant
[14,19,20,22,23]. In contrast with protective HLA molecules, those that mediate lack of
immune control typically restrict dominant epitopes outside of Gag, in proteins such as Env
and Nef [24], and escape mutants are either not selected by these CTL responses or they have
no discernible effect on viral replicative capacity [24–26]. Thus the mechanism of HLA-medi-
ated immune control or lack of control is strongly linked to the impact that the relevant escape
mutants have on viral replicative capacity.

The role of HLA and the impact of viral replicative capacity on disease progression has been
less well studied in pediatric HIV infection. Although CD8+ T cell responses against HIV are
detectable in the first days of life [27,28], a viral setpoint is not established for years [29], unlike
adult infection where viral load reaches a setpoint 6 weeks after infection [1]. The evidence that
HLA class I plays an important role in immune control of HIV in infected children is mixed
and somewhat contradictory [30–36]. In the largest of these studies, which followed 61 HIV-
infected mother-child pairs from birth, there was no overall impact of HLA on rate of progres-
sion in children, but if either the child or mother carried a protective HLA allele (HLA-B�57/
58:01/81:01), progression in the child was significantly delayed, provided that the protective
allele was not shared by mother and child. This supported earlier work [30,31], and was rein-
forced by subsequent studies in adults showing that disease progression in the recipient is
related to the viral replicative capacity of the transmitted virus [37–40]. Nonetheless, findings
from a smaller study of 11 Jamaican children suggested that infected children did not benefit
from having an HLA-B�57-positive mother [34]. However, in none of these studies were direct
measurements of viral replicative capacity made in infected children and their transmitting
mother, with the exception of one study [35] that measured VRC in 8 children only, and there-
fore was unable to examine the impact of HLA on VRC in pediatric infection.

To better define the relationship between viral replicative capacity (VRC), HLA expression,
and disease outcome in pediatric infection, we here studied a cohort of>350 HIV infected chil-
dren in South Africa. These studies are the first to measure viral replicative capacity both in
infected children and in their transmitting mothers, enabling the impact of transmitted virus
and maternal HLA type on pediatric VRC and disease outcome to be directly assessed. In addi-
tion, these investigations are the first to be undertaken in sufficient numbers of study subjects
to analyze with statistical rigor the impact of the VRC and HLA in both mother and child on
pediatric disease outcome. We aimed, first, to determine the relationship between viral replica-
tive capacity and disease progression in pediatric infection; second, to assess the impact of
maternal HLA and maternal VRC on VRC in the child; third, to compare the impact of both
protective and disease-susceptible HLA alleles, respectively, on the VRC of viruses in adults
and children; and, finally, to compare the impact of protective and disease-susceptible HLA on
disease outcome adults and children.

Materials and Methods

Patients and samples
We studied viral replicative capacity in a total of 47 treatment naïve mothers and 84 treatment
naïve children with chronic HIV-1 C-clade infection from Kimberley, South Africa. The mean
absolute CD4 count of the mothers was 358/mm3 (IQR 235-449/mm3) and the median viral
load 65,000 copies/ml (IQR 17,797–264,330). Of the 84 children studied, 55 were defined as
slow progressors based on failure to meet 2010 WHO criteria to initiate ART. These criteria
may be summarised thus: (i) age (all those diagnosed at<1yr are recommended to initiate
ART irrespective of CD4 count) (ii) CD4 criteria to initiate ART: a CD4%<25% in children
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aged 1–4yrs or an absolute CD4<350/mm3 in children aged�5yrs; (iii) clinical criteria to start
ART (WHO clinical disease stage 3 or 4). The mean age of the slow progressors (n = 55) was
7.5yrs (IQR 66–112 months), mean CD4% 26% (IQR 21–29%), mean absolute CD4 count 642/
mm3 (IQR 422-824/ mm3) and median viral load 30,000 copies/ml (IQR 6,800–79,000). Rapid
progressor children (n = 29) were defined as those who had reached a CD4%<25% by 24 months
of age. The mean age of the rapid progressors was 14 months (IQR 8–23months), mean CD4%
16% (IQR 8–20%), mean absolute CD4 count 554/mm3 (IQR 226-831/mm3) and median viral
load 1,100,000 copies/ml (IQR 280,000–5,650,000). [For comparison with published data for
HIV-uninfected children [41] aged 1–2yrs, at this age the normal range (10th-90th centiles) of
absolute CD4 count is 1300-3400/mm3 and of CD4% is 32–51%].

The HLA typed adult cohort analyzed to compare the impact of protective and disease-sus-
ceptible alleles in infected adults versus children, comprised 1,211 ART-naïve subjects with
chronic clade C HIV infection from Durban, South Africa. This cohort has previously been
well-described [8,24]. The median CD4 count of the cohort was 376/mm3, (IQR 240–518/
mm3). The median viral load was 38,200 copies/ml (IQR 7,209–156,000). The 361 HLA typed,
HIV-infected children analyzed comprised 310 children from Kimberley, South Africa; 44 chil-
dren from Durban, South Africa, including 28 children from a previously described smaller
cohort of children [33,42] who were followed from birth; and 7 Southern African children
being followed in UK. The Durban cohort included 17 ART-naïve children followed from
birth, of whom 5 expressed one of the protective HLA alleles HLA-B�57/58:01/81:01. Among
the pediatric ‘rapid progressors’ (n = 98), defined using the criteria above (CD4%<25% by
24 months of age), the median age immediately prior to ART initiation was 6m, (IQR 3–9m),
median absolute CD4 count 584/mm3 (IQR 321–952/mm3), median CD4% 13% (IQR 9.5–
15%), and median viral load 1.1m copies/ml (IQR 0.35–3.0m); and ‘slow progressors’
(n = 263): ART-naïve children aged�5yrs (mean 7.8yrs, IQR 5.1–10.0yrs), median absolute
CD4 count 845/mm3 (IQR 470–1084/mm3), median CD4% 26% (IQR 19–31%), median viral
load 34,000 (IQR 6,630–110,000).

Viral load measurement was undertaken using the BioMérieux NucliSens Version 2.0 Easy
Q/ Easy Mag (NucliSens v2.0) assay (dynamic range 20–10m) prior to 2010 and using the
COBAS AmpliPrep/COBAS TaqMan HIV-1 Test version 2.0 by Roche (CAP/CTM v2.0)
(dynamic range 20–10m) subsequent to 2010. In the case of child P1, plasma was diluted
10 fold to determine the viral load above the 10m upper limit of the assay. CD4+ T cell counts
were measured by flow cytometry.

Informed consent was provided for participation of the subjects in the study. Ethics
approval was given by the University of the Free State Ethics Committee, Bloemfontein, the
Biomedical research Ethics Committee, University of KwaZulu-Natal, Durban, and the Oxford
Research Ethics Committee.

HLA typing
Samples from study subjects were HLA-A,-B, and–C Sequence Based Typed in the CLIA/ASHI
accredited laboratory of William Hildebrand, PhD, D (ABHI) at the University of Oklahoma
Health Sciences Center using a locus specific PCR amplification strategy and a heterozygous
DNA sequencing methodology for exon 2 and 3 of the class I PCR amplicon.

Relevant ambiguities [43] were resolved by homozygous sequencing. DNA sequence analy-
sis and HLA allele assignment were performed with the software Assign-SBT v3.5.1 from Con-
exio Genomics.
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Viral RNA isolation and nested RT-PCR amplification of gag-protease
from plasma
Viral RNA was isolated from plasma by use of a QIAamp Viral RNAMini Kit from Qiagen.
The Gag-Protease region was amplified by reverse transcription (RT)-PCR from plasma HIV-1
RNA using Superscript III One-Step Reverse Transcriptase kit (Invitrogen) and the following
Gag-protease-specific primers: 5’ CAC TGC TTA AGC CTC AAT AAA GCT TGC C 3’
(HXB2 nucleotides 512 to 539) and 5’ TTT AAC CCT GCT GGG TGT GGT ATT CCT 3’
(nucleotides 2851 to 2825). Second round PCR was performed using 100-mer primers that
completely matched the pNL4-3 sequence using Takara EX Taq DNA polymerase, Hot Start
version (Takara Bio Inc., Shiga, Japan). One hundred microliters of reaction mixture was com-
posed of 10ul of 10x EX Taq buffer, 4ul of deoxynucleoside triphosphate mix (2.5 mM each),
6ul of 10uM forward primer (GAC TCG GCT TGC TGA AGC GCG CAC GGC AAG AGG
CGA GGG GCG ACT GGT GAG TAC GCC AAA AAT TTT GAC TAG CGG AGG CTA
GAA GGA GAG AGA TGG G, 695 to 794) and reverse primer (GGC CCA ATT TTT GAA
ATT TTT CCT TCC TTT TCC ATT TCT GTA CAA ATT TCT ACT AAT GCT TTT ATT
TTT TCT GTC AAT GGC CAT TGT TTA ACT TTT G, 2646 to 2547), 0.5ul of enzyme, and
2ul of first round PCR product and DNase-RNase-free water. Thermal cycler conditions were
as follows: 94°C for 2 min, followed by 40 cycles of 94°C for 30 s, 60°C for 30 s, and 72°C for 2
min and then followed by 7 min at 72°C. PCR products were purified using a QIAquick PCR
purification kit (Qiagen, UK) according to manufacturer’s instructions.

Generation of recombinant Gag-Protease viruses
A deleted version of pNL4-3 was constructed [17] that lacks the entire Gag and Protease region
(Stratagene Quick-Change XL kit) replacing this region with a BstE II (New England Biolabs)
restriction site at the 5’ end of Gag and the 3’ end of protease. To generate recombinant viruses,
10ug of BstEII-linearized plasmid plus 50ul of the second-round amplicon (approximately 2.5ug)
were mixed with 2 x 106 cells of a Tat-driven green fluorescent protein (GFP) reporter T cell line
[44] (GXR 25 cells) in 800ul of R10 medium (RPMI 1640 medium containing 10% fetal calf
serum, 2 mM L-glutamine, 100 units/ml penicillin and 100ug/ml streptomycin) and transfected
by electroporation using a Bio-Rad GenePulser II instrument (300 V and 500 uF). Following
transfection, cells were rested for 45 min at room temperature, transferred to T25 culture flasks in
5ml warm R10 and fed with 5ml R10 on day 4. GFP expression was monitored by flow cytometry
(FACS Calibur; BD Biosciences), and once GFP expression reached>30% among viable cells
supernatants containing the recombinant viruses were harvested and aliquots stored at -80°C.

Replication capacity assays
The replication capacity of each chimera is determined by infection of GXR cells at a low
multiplicity of infection (MOI) of 0.003. The mean slope of exponential growth from day 2 to
day 7 was calculated using the semi log method in Excel. This was divided by the slope of
growth of the wild-type NL4-3 control included in each assay to generate a normalized mea-
sure of replication capacity. Replication assays were performed in triplicate, and results were
averaged. These VRC determinations were undertaken entirely blinded to the identity of the
study subject.

Viral sequencing and phylogenetic analysis
Population sequencing was undertaken using the Big Dye ready reaction terminator mix (V3)
(Department of Zoology, University of Oxford). Sequence data were analysed using
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Sequencher v.4.8 (Gene Codes Corporation). Nucleotides for each gene were aligned manually
in Se-Al v.2.0a11. Maximum-Likelihood phylogenetic trees were generated using PHYm131
(http://www.hiv.lanl.gov) and visualised using Figtree v.1.2.2 (http://tree.bio.ed.ac.uk/software/
figtee/).

Interferon-gamma elispot and ICS assays
As previously described, [7,28,33] interferon gamma elispot assays were carried out using a
panel of overlapping peptides (18mers with a 10 amino acid overlap) that had been synthesized
based on the clade C consensus sequence; 66 peptides spanned the Gag protein sequence. Spe-
cific responses of>100 spot forming cells (SFC)/million peripheral blood mononuclear cells
(PBMC) were defined as significant. In addition, defined optimal peptides were also tested
according to the corresponding HLA type of the subject. The ICS assays presented were per-
formed as previously described [30] using the pool of 66 overlapping Gag peptides. Quadrant
boundaries for IFN-γ staining were established by exclusion of 99.9% of control CD8+ T cells.

Statistical analysis
The VRCs of rapid progressor and slow progressor children were compared using the Student’s
t test. These data were normally distributed as determined by the D’Agostino and Pearson
omnibus normality test. The Mann-Whitney U Test was used to compare differences in VRC
resulting from protective or disease-susceptible HLA allele expression as these data were not
normally distributed (D’Agostino and Pearson omnibus normality test). The relationship
between maternal VRC and child VRC and CD4 and VRC were assessed using the Spearman’s
correlation. The relationship between VRC and number of selected Gag mutations was also
assessed by determination of the Spearman rank correlation coefficient between the two vari-
ables. The selected mutants comprised [11,15,45,46]: A146X and I147X within the HLA-B�57
restricted epitope ISPRTLNAW (ISW9, Gag 147–155); A163X and S165X within the HLA-
B�57:03-restricted epitope KAFSPEVIPMF (KF11, Gag 162–172); E177X, Q182X and T186S
within the HLA-B�81:01-restricted epitope TPQDLNTML (TL9, Gag 180–188); T242X and
I247X within the HLA-B�57/58:01-restricted epitope TSTLQEQIAW (TW10, Gag 240–249);
T310X within the HLA-B�58:01-restricted epitope QATQDVKNW, (QW9, Gag 308–316). In
the analyses of the impact of HLA on CD4 count and viral load in pediatric study subjects, we
undertook power calculations based on previously published adult data [8,11] via bootstrap
experiments where we sampled with replacement from the adult data. For example, to test the
difference in viral loads between the subjects expressing Protective HLA alleles and those
expressing Disease-susceptible patients, for each study group sample size, 1000 experiments
were undertaken to determine the proportion where the difference in viral loads between Pro-
tective and Disease-susceptible groups remained significant at p<0.05. The number in each
group required to provide 80% power to show this significance difference between the groups
was a group size of 27; having as many as 46 in each group provided 97% power. These calcula-
tions demonstrate that we had ample statistical power to demonstrate whether there was an
HLA effect in children that was equivalent to that observed in adults.

Results

Lower viral replicative capacity associated with slow progression in
children
Recombinant viruses were generated from 43 mother-child pairs, and from an additional 41
children for whom the mother was unavailable for study and a further 4 mothers for whom the
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child was unavailable for study. Fifty-five of these children were defined as slow-progressor
(ART-naïve, absolute CD4 count>350/mm3, age�5yrs, did not meet 2010 WHO criteria to
commence ART) and 29 were defined as rapid-progressor (CD4�25% by 24 months of age).
Chimeric viruses generated by co-transfection of the amplified patient-derived gag-protease
genes with the linearized pNL4-3Δgag-protease were used to infect a GFP reporter cell line as
previously described [18,19,44,45,47–51]. Several previous studies adopting this methodology
[18,45,47,48] have demonstrated 99–100% amino acid sequence identity between plasma virus
and the gag-pro-chimeric viruses, after exclusion of codons containing mixed bases. The same
comparison was undertaken here in a subset of the study subjects (n = 33), confirming amino
acid identity between plasma and gag-pro-chimeric viruses sequence at a median of 99.4% resi-
dues (range IQR 99–100%) (S1A and S1B Fig). Thus the gag-pro chimeric viruses that were
generated are indeed representative of the plasma virus in each study subject.

Gag-protease chimeric viruses derived from slow-progressor children displayed signifi-
cantly reduced replication capacity to those derived from rapid-progressors (p = 0.02; Student’s
t test; Fig 1A). Furthermore, VRC correlated significantly with decreasing absolute CD4 count
in the slow-progressor children at 5 yrs of age (r = -0.33 p = 0.026, Fig 1B) and at 7.5 yrs of age
(r = -0.42, p = 0.008, Fig 1C). The plasma samples from which the chimeric viruses were gener-
ated were obtained from slow progressors aged a mean of 7.5 years, and thus the stronger cor-
relation with CD4 count at 7.5 years than with CD4 count at 5yrs is consistent with this.
Similarly, the measured VRC also correlated with the CD4 count exactly coincident with sam-
ple obtained for generation of the chimeric viruses from which VRC was determined (r = -0.34,
p = 0.01; Fig 1D). Together these data suggest that VRC influences disease progression in pedi-
atric infection, with CD4 count being closely associated with disease progression in HIV-
infected children.

Of note, in contrast to HIV-infected adults, viral load and absolute CD4 are not significantly
correlated, except in older children as they approach adolescence. Here, in the slow progressor
children aged 5yrs, the correlation between VL and CD4 is weak (r = -0.25, p = 0.32) and in the
7.5yo children, the correlation approaches significance (r = -0.31; p = 0.09) (S2 Fig). For this
reason, there is no correlation observed between VRC and viral load in the slow progressor
children (S2 Fig). In contrast to absolute CD4 count, viral load is a poor marker of disease pro-
gression in children and is not part of WHO criteria for ART initiation in children.

Impact of the maternally transmitted virus
First, the authenticity of the mother-child transmission pairs was validated by phylogenetic
analysis of all the viral sequences (S3 Fig). The VRC of chimeric viruses derived from the chil-
dren was then compared with those of the respective mothers. Overall, somewhat surprisingly,
the VRC in the mothers tends to be slightly higher than in the children (mean VRC 0.69 versus
0.62; p = 0.056, paired t test, Fig 2A and 2B). This result is discussed further below. However,
considerable variation in this pattern was observed. As expected, overall, maternal and child
VRCs were significantly correlated (r = 0.43, p = 0.004; Fig 2C), in spite of the fact that on aver-
age 7.5yrs had elapsed since transmission in the case of the slow progressors. In keeping with
the fact VRC in the rapid progressors was determined from children and mothers a mean of
only 14 months post transmission, the Spearman correlation coefficient between VRC in moth-
ers and children was higher for the rapid progressors than for the slow progressors (r = 0.55
versus r = 0.36, respectively; Fig 2D and 2E).
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Differential impact of HLA Class I expression on VRC in adult and
pediatric infection
In order to better understand the observed differences in VRC within mother-child pairs we
next investigated the relative impact on VRC in mother and child of the protective HLA alleles

Fig 1. Lower viral replicative capacity is associated with slow progression in children. A. Replication capacities, normalized to NL4-3 comparator virus,
were significantly lower in slow progressor children, median 0.61 (n = 55) compared to rapid progressor children, median 0.71 (n = 29) (p = 0.02). B. VRC
correlation with decreasing absolute CD4 count in slow-progressor children at 5 years of age (n = 46). C. VRC correlation with decreasing absolute CD4
count in slow-progressor children at 5 years of age (n = 38). D. VRC correlation with decreasing absolute CD4 count in slow-progressor children at the age of
assay date (n = 55).

doi:10.1371/journal.ppat.1004954.g001
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HLA-B�57, HLA-B�58:01 and HLA-B�81:01, previously shown to significantly reduce VRC
[12–20]. The VRC of chimeric viruses was substantially lower (VRC 0.52 vs 0.77) in the moth-
ers who expressed any of these protective HLA alleles, compared with the mothers who did not
(p<0.0001, Mann-Whitney test, Fig 3A). In contrast, there was a marginal impact on VRC of
these protective HLA alleles in children (VRC 0.59 versus 0.66; p = 0.08). Similarly, in mothers
who expressed one or more of the HLA alleles associated with more rapid disease progression,
HLA-B�18:01, HLA-B�45:01, and HLA-B�58:02, VRCs were significantly higher than in those
who did not express these alleles (VRC 0.87 vs 0.64; p = 0.007) whereas in children the VRC
was not increased in those with disease-susceptible HLA alleles (VRC 0.62 vs 0.64, p = 0.41, Fig
3B). Thus the effects of the protective HLA alleles and disease-susceptible HLA alleles on VRC
were striking among the adult subjects and minimal to absent in the children.

To further investigate the previous finding that slow progression is significantly associated
with the mother or the child possessing one of the protective HLA-B alleles, but less so if the
protective allele was shared by mother and child [30,33] we analyzed the VRC in children
according to the presence or absence of protective alleles (HLA-B�57, HLA-B�58:01 or

Fig 2. Relationship betweenmaternal VRC and pediatric VRC. A. Maternal VRC (red circles) and child VRC (black squares) for each mother-child
transmission pair. B. Comparison between VRC in mother and child: maternal mean VRC 0.69 versus VRC in the child 0.63; p = 0.056, paired t test. C.
Correlation between VRC in mother and child for all children (n = 43, r = 0.43, p = 0.004). D. Correlation between VRC in mother and child for slow progressor
children (n = 31, r = 0.36, p = 0.04). E. Correlation between VRC in mother and child for rapid progressor children (n = 12, r = 0.55, p = 0.06).

doi:10.1371/journal.ppat.1004954.g002
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Fig 3. Relative contribution of HLA-B alleles in VRC in mothers and children. A. VRC in mothers expressing protective HLA alleles (n = 16) and not
(n = 30); and in children expressing protective HLA alleles (n = 22) and not (n = 54). B. VRC in mothers expressing disease-susceptible HLA alleles (n = 9)
and not (n = 37); and in children expressing disease-susceptible alleles (n = 14) and not (n = 62). C. VRC in the child according to expression of protective
HLA alleles in mother or child (+/+ n = 8;-/+ n = 8; +/- n = 9;-/- n = 18). D. VRC in the child according to expression of disease-susceptible alleles in the mother
and/or child (+/+ n = 7;-/+ n = 7; +/- n = 6;-/- n = 23).

doi:10.1371/journal.ppat.1004954.g003
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HLA-B�81:01) in mother and/or child. We observed here that, in the group where children and
mothers both lacked protective alleles, the VRC was higher than the other three groups, signifi-
cantly so where the mother and child share a protective allele and when the child alone carries
the protective allele (p = 0.05) (Fig 3C). These data suggest that, although protective HLA
alleles have a greater impact on VRC in adults than in children (Fig 3A), the VRC in children is
more influenced by the protective alleles when they are expressed in the children themselves
than when expressed in the mothers (Fig 3C). In contrast, the impact of the disease-susceptible
alleles HLA-B�18:01/45:01/58:02 on the child’s VRC was greatest when the mother carried any
of these (Fig 3D). Disease-susceptible alleles in the children therefore appeared to have little
impact on VRC in the child.

Strong correlation between Gag escape mutant number and VRC
To determine whether the differences in VRC observed were indeed related to the occurrence
of escape mutants in Gag selected by these protective HLA alleles as indicated by previous
work, [11–20,45,46] we sought a correlation between VRC and number of Gag escape mutants
associated with these HLA alleles in each of the chimeric viruses studied, irrespective of the
study subject. As expected, a highly significant correlation was observed between the number
of Gag escape mutants associated with the protective HLA alleles and decreasing VRC (r =
-0.33, p = 0.0002, Fig 4A). Breaking these data down into the mothers and children, the impact
on VRC of these Gag mutants associated with the protective HLA molecules appeared greater
in the mothers (r = -0.45, p = 0.002, Fig 4B) than the children (r = -0.22, p = 0.045, Fig 4C).
However the impact of these Gag escape mutants on VRC in the slow progressor children was
similar to that in the mothers (r = -0.37, p = 0.006); only in the rapid progressor children,
where the number of Gag mutants associated with protective HLA alleles was low, was there
no evidence of any impact of these HLA molecules on VRC (S4A and S4B Fig).

These analyses were repeated to assess the impact, not only of the Gag mutants associated
with the protective HLA molecules HLA-B�57/58:01/81:01, but of all 20 Gag escape mutants
within defined Gag CD8+ T-cell epitopes [11,15,45,46] (S1 Table). These include a number of
mutants that it may be inferred reduce viral replicative capacity from evidence that these revert
in the absence of the relevant HLA molecule [12,13,15] and reflect the impact of HLA mole-
cules such as HLA-B�42:01, HLA-B�39:10 and HLA-B�14:01 that offer some degree of protec-
tion against disease progression, though not as much as provided by HLA-B�57/58:01/81:01
[2,7–8,11]. In contrast, the disease-susceptible HLA molecules make no contribution to the
selection of Gag mutants. These analyses suggest that the additional Gag mutants also contrib-
ute to VRC, with overall a strong correlation between VRC and number of Gag CD8+ T-cell
epitope mutants (r = -0.40, p<0.0001, Fig 4D); similar in mothers (r = -0.50, p = 0.0007,
Fig 4E) as in children (r = -0.37, p = 0.0007, Fig 4F).

Low Gag mutant number in adults with high VRC expressing disease-
susceptible HLA
The observation of a clearcut increase in VRC in mothers expressing disease-susceptible alleles
HLA-B�18:01/45:01/58:02 (shown in Fig 3B) prompts the question of what drives the VRC up
in these subjects; or whether, alternatively, the VRC is driven down in those who do not express
these alleles. Analysis of the number of Gag variants, using all 20 Gag escape mutants, in sub-
jects who do and who do not express these disease-susceptible alleles, respectively, shows a sub-
stantially lower number of Gag escape mutants in the mothers expressing disease-susceptible
alleles (mean 2.4 versus 4.6; p = 0.001, Student t test; Fig 5). This difference persisted even
when subjects expressing the protective HLA alleles were omitted (p = 0.003,S5 Fig). These
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differences were also marked when the analysis was limited to the Gag mutants associated with
the protective HLA alleles (mean 0.8 versus 1.9 in subjects who did and who did not express dis-
ease-susceptible alleles, respectively) although in this case this did not approach statistical signifi-
cance (p = 0.4; Fig 5). In summary, these data are consistent with high VRC in adult subjects
expressing disease-susceptible allele as the result principally of these HLAmolecules failing to
drive the selection of Gag CD8+ T-cell escape mutants. In contrast with the adults, in children
the effects of these disease-susceptible alleles is apparently nil, with Gag escape mutants equally
distributed between children who do and who do not express these HLA alleles.

Discordant impact of HLA on progression in HIV-infected children and
adults
To compare the impact of protective and disease-susceptible HLA alleles on progression in
adults and children we first analyzed the expression of these alleles in chronically infected,
ART-naïve South African adults, analyzed according to absolute CD4 count at enrollment
(Fig 6A and 6B). As expected, protective HLA alleles were highly enriched in adults with high
CD4 counts and disease-susceptible alleles highly enriched in adults with low CD4 counts. In

Fig 4. Impact of Gagmutations on VRC. A-C: HLA-B*57/58:01/81:01 mutations. (A146X, I147X, A163X, S165X, E177X, Q182X, T186S, T242X, I247X
and T310X). A. All subjects; B. Mothers; C. Children. D-F: Gag CD8+ T-cell mutations (listed in S1 Table). DS. All subjects. E. Mothers. F. Children.

doi:10.1371/journal.ppat.1004954.g004
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HIV-uninfected children during the first five years of life, absolute CD4 counts change dramat-
ically according to age, declining from a median of 2500–3000/mm3 during the first year to a
stable median of approximately 750–1000 cells/mm3 from age 5yrs through adulthood [41].
Comparing ART-naïve, HIV-infected children aged>5yrs with CD4 counts of�750 cells/
mm3 with those with CD4 counts of 350–749 cells/mm3, we observed no significant difference
in the frequency of protective or disease-susceptible HLA alleles in these groups. Similarly, in a
rapid progressor group of HIV-infected children (median age at ART initiation 6m, median
absolute CD4 count 584/mm3, median CD4% 13%, and median viral load 1.1m), the frequency
of protective and disease-susceptible alleles also did not differ significantly from the ‘slow pro-
gressor’ groups of infected children. Thus, the impact of the protective and disease-susceptible

Fig 5. Gagmutant number in adults with high VRC expressing disease-susceptible HLA. A-B: HLA-B*57/58:01/81:01 mutations. A. Mothers. B;
Children. C-D: Gag CD8+ T-cell mutations. C. Mothers. D. Children.

doi:10.1371/journal.ppat.1004954.g005
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HLA alleles on CD4 count is marked in adult infection, but is barely discernible in pediatric
infection. Similarly, analysis of the impact of the protective and disease-susceptible HLA alleles
on viral loads in ART-naïve adults and children (Fig 6C and 6D) showed significant effects
among the adults (a median 0.8 log HIV copies/ml difference between adults with protective
alleles versus those with disease-susceptible alleles), and insignificant effects among the slow
progressor children. Although, as described above, viral load is less helpful as a proxy for

Fig 6. Impact of protective and disease-susceptible HLA alleles on disease progression in adults in children. A. The frequency of ART-naïve adults
and children stratified according to CD4 count and disease progression (see Methods) expressing one or more of the protective HLA alleles HLA-B*57/
58:01/81:01. Adult study numbers: absolute CD4<200/mm3, n = 204; CD4 350–749/mm3, n = 553; CD4�750/mm3 n = 77. Children study numbers: Rapid
Progressors, n = 98; CD4 350–749/mm3, n = 102; CD4�750/mm3, n = 161. B. As in panel A, but the frequency of subjects expressing one or more of the
disease-susceptible HLA alleles HLA-B*18:01/45:01/58:02. C. Viral load in ART-naïve adults (total, n = 1,211) according to the presence of protective HLA
alleles and/or disease-susceptible alleles. ** represents p<0.001, *** represents p<0.0001. Not shown on the figure are significant differences between viral
loads in the disease-susceptible group and each of the other groups (in each case p<0.0001). D. As in panel C, but in ART-naïve children (total n = 256, age
�5yrs).

doi:10.1371/journal.ppat.1004954.g006
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disease progression in pediatric versus adult infection, it is clear that in terms of the biological
markers of disease progression, absolute CD4 count and viral load, the HLA alleles that have
the strongest effects on outcome in adult infection have minimal impact in pediatric infection.

Lack of selection pressure mediated by protective HLA in rapid
progressor children
In order to help explain the diminished impact of particular HLA allele expression in infected
children, we sought to test the hypothesis that the CD8+ T-cell responses restricted by protec-
tive HLA molecules such as HLA-B�57/58:01/81:01 generally have less antiviral efficacy in
children compared to adults. The selection of viral escape mutants to evade the dominant
Gag-specific CD8+ T-cell responses restricted by these alleles is evidence of immune selection
pressure, and is observed in 60–80% of unselected, chronically adults expressing these alleles
[11–13,46]. Hypothesizing that anti-HIV CD8+ T-cell efficacy would be significantly lower,
and therefore that the frequency of these escape mutants would also be substantially lower, in
rapidly progressing infants expressing any of these ‘protective’HLAmolecules, we studied a
historical cohort of 20 ART-naïve, HIV-infected infants born in Durban, South Africa, between
2002–2005 [42], who were followed from birth. Antenatal, third trimester samples in each case
were obtained from the transmitting mothers, providing close approximations to the transmit-
ted virus. A current day cohort of this type would not be possible to study because since 2008
WHO guidelines have recommended ART initiation in all HIV-infected infants, irrespective of
CD4% [52,53]. In this historical cohort, the CD4 criteria for ART initiation in infants followed
the prevailing WHO guidelines, namely a confirmed CD4% of<20% [54].

Of these 20 children, 17 met the CD4 criteria for ART initiation within the first year of life
(confirmed CD4%<20%), thereby also meeting the criteria in this current study for rapid pro-
gression (CD4%<25% within the first 24m of life). Five of these 17 rapid progressor children
carried one of the protective HLA molecules HLA-B�57/58:01/81:01. For convenience, these
children are referred to here as P1-P5. Children P1-P2 each expressed HLA-B�58:01 and the
mothers did not express HLA-B�58:01; as expected, therefore, in each case, the transmitted
virus encoded no mutations within the dominant HLA-B�58:01-restricted Gag epitope,
TSTLQEQIAW (‘TW10’; Gag 240–249). In P1, a strong CD8+ T-cell response was detectable
towards 66 pooled overlapping 18mer Gag peptides when first assayed on day 10 of life (Fig 7A
and 7B); individual testing of the overlapping Gag peptides demonstrated that the single Gag-
specific response was towards the two 18mer peptides (Gag-33/Gag-34) containing the TW10
epitope in the 10 amino acid overlap (Fig 7C and 7D). Other than the short-lived drop in vire-
mia [55] resulting from single dose Nevirapine that each child received on the day of birth, and
the mother received during labour, as per prevailing prevention of mother-to-child transmis-
sion guidelines at the time [56], viral load in this child increased from 6.5m copies/ml on day 1
of life to>10m copies/ml over the first 6 months of life, coincident with maintenance of the
TW10/Gag-specific response at the same level of 0.73–1.14% CD8+ T-cells. However, through-
out this time there was no evidence of selection of TW10 or other Gag escape mutants (Fig
7D).

No HLA-B�58:01-TW10 or Gag escape mutants were selected in P2, although in this case no
CD8+ T-cell responses were detected to any of the same set of Gag peptides (Fig 8A and
Table 1). In the HLA-B�57:03-positive child, P3, although the mother also expressed HLA-
B�57:03, the transmitted virus did not carry escape mutants in the HLA-B�57:03-restricted Gag
epitope KAFSPEVIPMF (‘KF11’, Gag 162–172). In this child, no KF11 CD8+ T-cell responses
were detected and no escape mutants selected (Fig 8B and Table 1). In the HLA-B�81:01-positive
child, P4, the transmitted virus did not carry escape mutants in the HLA-B�81:01-restricted Gag
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epitope TPQDLNTML (‘TL9’, Gag 180–188). In this case, strong TL9-specific CD8+ T-cell
responses were consistently detectable at>1000 SFC/million PBMC (1162 and 1073 SFC/million
PBMC on day 61 and day 69, respectively), but progression to CD4%<20% with rising viremia
occurred without selection of TL9 escape mutants (Fig 8C and Table 1).

The fifth case, P5, was more complex to evaluate, because both mother and child expressed
HLA-B�81:01, and the virus sequenced from the mother 3 days prior to delivery encoded a
mixture of TL9 variants (Fig 8D, 8E and 8F and Table 1). The dominant variant in the child

Fig 7. Gag-specific CD8+ T-cell responses and autologous viral sequences in a rapid progressing child, P1. A. Viral load and CD4% changes, CTL
assays and viral sequencing timepoints. Closed red squares: viral load. Closed green squares: CD4%. Horizontal dotted lie: threshold for ART initiation
(confirmed CD4<20%). Black closed circle: timepoint of maternal viral sequencing. Dbd: days before delivery. sdNVP: single dose nevirapine, given during
labour and on the first day of life to the infant. D182: age of child at ART initiation. B. Gag-specific intracellular interferon-gamma staining assay undertaken
when P1 was 10 days of age. C. Interferon-gamma elispot responses to Gag-33 and Gag-34 (two of 66 overlapping 18mers spanning the Gag protein), and
on day 41 to the HLA-B*58:01-retricted Gag epitope TSTLQEQIAW contained within overlapping peptides Gag-33/4; and Gag-specific IFN-γ ICS data,
showing responses to 66 pooled overlapping Gag peptides. D. Maternal viral sequence 31 days before delivery and autologous viral sequence in P1 showing
lack of escape in all time points analyzed from day 1 to day 207, 25 days after ART initiation.

doi:10.1371/journal.ppat.1004954.g007
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switched from D183E on day 1 of life to Q182S by day 37. A response to the Gag 18mer (Gag-
25) containing TL9 was not detectable until day 79 (Fig 8D, 8E and 8F), and assays at this time
point and at day 141 just prior to ART initiation showed the same pattern, namely, no evidence
that Q182S was an escape mutant, but that Q182S was better recognized than both the D183E
variant and the wildtype TL9 peptide (Fig 8F). The evidence that TL9 escape occurred in child
P5 is therefore equivocal, at best. It is clear however that the dominant Gag response in this
child, that was detectable from day 4 in life, was to the HLA-�18:01-restricted epitope
FRDYVDRFF (‘FF9’, Gag 293–301) [57]. This response, although like the TL9-Q182S
response, present at>1000 SFC/million PBMC in elispot assays, also did not drive selection of
escape mutants over the 6 months of disease progression towards ART initiation.

In summary, these 5 cases of HIV-infants followed from birth progressed rapidly to CD4%
of<20%, in the setting of persistent viremia of>106−107 copies/ml, in spite of expression of

Fig 8. Rapid progression and lack of CTL escape in 4 additional rapid progressor expressing protective HLA-B*57/58:01/81:01. A-D. Clinical data
for subjects P2-P5 (as for P1 in Fig 7A). E. In child P5, elispot IFN-γ responses to 17–18mer Gag peptides Gag-40 (from day 4 of life) and Gag-25 (from day
79 of life) and Gag ICS responses to the pool of 66 Gag overlapping peptides. F. In child P5, recognition in IFN-γ elispot assays of autologous TL9 variants
TPSDLNTML (Q182S) and TPSELNTML (D183E), compared to recognition of wildtype TL9. PBMCwere tested at day 79 and day 141, with the pattern; data
are shown from PBMC at day 141.

doi:10.1371/journal.ppat.1004954.g008
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the protective HLA alleles HLA-B�57/58:01/81:01, and did so in a manner notable by the
absence of the selection of escape mutants. In some cases these children did not generate
detectable CD8+ T-cell responses, but in others these responses were maintained at relatively
high frequencies.

Discussion
These studies of HIV-infected children and mothers show, first, a significant correlation
between the replicative capacity of viruses in infected children and their rate of progression.
Second, despite the fact that, on average, 7.5yrs had elapsed since transmission, there remained
a highly significant correlation between the VRC in mothers and children within transmission
pairs. Unexpectedly, the VRC was typically lower in the child than in the mother within each
pair. Third, the impact of protective HLA alleles HLA-B�57/58:01/81:01 and disease-suscepti-
ble HLA alleles HLA-B�18:01/45:01/58:02 on VRC was marked among the adults but non-sig-
nificant or absent, respectively, among the children. However, the impact of maternal alleles on
the child’s VRC was greatest when the mother carried any of the disease-susceptible alleles
HLA-B�18:01/45:01/58:02. The impact of protective and disease-susceptible alleles on VRC
was strongly linked to the number of Gag CD8+ T-cell escape mutations within the virus.
Finally, the impact of protective and disease-susceptible HLA alleles on disease progression,
using CD4 count or viral load as a marker, was strikingly discordant between children and
adults, with minimal HLA impact discernible among children. Longitudinal analysis from
birth of 5 HIV-infected children who progressed rapidly in spite of expressing protective HLA
alleles showed that even when high frequency responses restricted by the relevant protective
HLA alleles were generated, no evidence for any impact on viral replication was evident.

Table 1. Autologous virus sequences in children P2-P5 and their mothers encoding the relevant Gag-specific CD8+ T-cell epitopes restricted by
HLA-B*57/58:01/81:01 and HLA-C*18:01.

Progressor Pair Timepointa Epitope and HLA Restriction

B*57:03 B*57:03 B*81:01 B*57/58:01 C*18:01

AISPRTLNAW KAFSPEVIPMF TPQDLNTML TSTLQEQIAW FFRDYVDRF

P2 Mother B*58:01-ve 55dbd N/A N/A N/A ———————— N/A

P2 Child B*58:01+ve d13 N/A N/A N/A ———————— N/A

d45 N/A N/A N/A ———————— N/A

d106 N/A N/A N/A ———————— N/A

P3 Mother B*57:03+ve 26dbd PL—————— ————————— N/A –N————— N/A

P3 Child B*57:03+ve d43 PL—————— ————————— N/A –N————— N/A

d79 PL—————— ————————— N/A –N————— N/A

d123 PL—————— ————————— N/A –N————— N/A

P4 Mother B*81:01+ve 29dbd N/A N/A ——————— N/A N/A

P4 Child B*81:01+ve d18 N/A N/A ——————— N/A N/A

d61 N/A N/A ——————— N/A N/A

d613 N/A N/A ——————— N/A N/A

P5 Mother B*81:01+ve 3dbd N/A N/A –SX———— N/A ———————

P5 Child B*81:01+ve d1 N/A N/A —E———— N/A ———————

d37 N/A N/A –S————— N/A ———————

d79 N/A N/A –S————— N/A ———————

d372 N/A N/A –S————— N/A ———————

a timepoint: dbd = days before delivery of child; X: mixed bases; N/A: not applicable - relevant HLA allele not expressed

doi:10.1371/journal.ppat.1004954.t001
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Together, therefore, these data are consistent with a substantially diminished impact of HLA
on disease outcome in pediatric infection compared to the marked effect observed in adults,
although the influence of maternal HLA, principally via VRC of the transmitted virus to the
child, does also affect disease progression in children.

The central part HLA plays in immune control of adult HIV infection has long been evident,
and the more recent GWAS studies have served to highlight the exclusivity of HLA polymor-
phism among human genetic variation in shaping HIV disease outcome [2–4]. Numerous
mechanisms by which HLA may mediate these effects have been proposed [5], prominent
among which is the hypothesis that protective HLA alleles such as HLA-B�27/57/58:01/81:01
reduce viral replicative capacity (VRC) through driving the selection of escape mutants in con-
served regions of the proteome such as Gag [12–20]. The high throughput assay developed to
measure VRC using Gag-Protease recombinant viruses [47] is therefore well-suited to examine
the impact of HLA on VRC through the selection of escape mutants largely arising in Gag.

Although in previous studies the relationship between VRC as measured by this assay and
the viral escape mutants selected in response to Gag CD8+ T-cell activity has been somewhat
inconsistent [18,45,49,51], here the correlation between the number of Gag escape mutants
and VRC has been very clear (in adults, r = -0.50, p<0.001 when including all Gag CD8 T-cell
escape mutants; and r = -0.45, p = 0.002 when including only the HLA-B�57/58:01/81:01-asso-
ciated Gag escape mutants). Taking into account that the 20 Gag CD8+ T-cell escape mutants
are only those that represent the strongest HLA footprints on the virus, and therefore meet the
statistical criteria (usually q<0.05 or q<0.2) [11,15,45] to be included, the likelihood is that the
selection of Gag escape mutants by CD8+ T-cell responses has a substantially greater impact
on VRC even than these data would indicate. Furthermore, the correlations between VRC and
number of Gag escape mutants would diminish and ultimately disappear if in the majority of
cases compensatory mutants were successfully selected by the virus to nullify any adverse
impact on VRC. On the basis of these data, the ability of compensatory mutants to restore
VRC appears limited. If so, this would be consistent with recent data suggesting that immune
pressure mediated by protective alleles such as HLA-B�57/58:01 is contributing to a decline in
HIV virulence over time [45].

The present studies address the role of HLA and of VRC in adult and pediatric HIV infec-
tion. It is known that VRC affects outcome in adult infection, as previously shown [37,40].
Consistent with the only other study that has examined VRC in pediatric HIV infection, in a
small study of 8 infected children [35], here we show that VRC is also related to pediatric dis-
ease outcome (Fig 1), being on average 15% lower in slow progressors compared to rapid pro-
gressors, and correlating with CD4 count at 5yrs and 7.5yrs age, despite the VRC assays in the
slow progressor children being determined on average 7.5yrs after transmission.

Unexpectedly, the VRC in mothers of the 43 mother-child pairs studied tended to be so-
mewhat higher than in the children (mean VRC 0.69 vs 0.63; p = 0.056). In some cases, this
result might be explained by the accumulation of costly escape mutants in the child’s virus
post-transmission; however, the same result was obtained from a separate study of VRC in 39
mother-child pairs in which the VRCs were determined from samples taken from mother and
child within 6 weeks of birth [58]. In that study, the VRC of the infected neonates was on aver-
age 20% lower than that in the mothers (median VRC 0.62 vs 0.77; p<0.0001). The fact that
both these results are consistent in indicating that the virus in the child has lower VRC than in
the mother suggests either that intense selection pressure is imposed on HIV in the initial
weeks on perinatal infection, which seems unlikely [59]; or that lower VRC viruses are prefer-
entially transmitted. If the latter, this would be the exact opposite of adult sexual transmission,
in which a transmission bias exists against viruses with low VRC [60]. This discrepancy
remains unexplained, and requires further investigation, but may indicate a distinct bottleneck
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in operation in perinatal mother-to-child-transmission compared to adult horizontal
transmission.

The discordant relationship between HLA and VRC in infected adults and children (Fig 3)
highlights the substantial impact of HLA on VRC in adults but not in children. Although pro-
tective alleles in the child appear to effect a modest reduction in VRC (Fig 3A and 3C), the pro-
tective alleles in the mother do not appear to have significant influence on the VRC in the
child, consistent with one previous study [34] and in contrast to another [33]. However the
existence of disease-susceptible alleles in the mother had a significant impact on VRC not only
in the mother but also in the child. The mechanism by which these disease-susceptible HLA
alleles might operate is suggested by the data showing a significantly lower number of Gag
CD8+ T-cell escape mutants in mothers expressing these alleles than those not. This supports
the hypothesis that disease susceptible alleles are ineffective against HIV principally because
they fail to contribute to Gag-specific immune pressure on the virus, rather than because they
actively mediate immune responses that prevent effective antiviral control [61,62].

Comparison of the relationship between HLA and disease outcome in infected adults and
children (Fig 6) serves to contrast the striking influence of HLA in adults with the relative
lack of impact in children. Protective and disease-susceptible HLA alleles had no statistically
significant effect on disease progression in infected children, on CD4 counts or on viral loads.
Although previous studies have anecdotally described slow disease progression in HIV-infected
children expressing protective HLA alleles such as HLA-B�27 or HLA-B�57 [30,31,34], less
prominently the same result has also been observed in children expressing no protective alleles
[32,36]. It seems clear that, in a minority of slow progressor children expressing the classical
protective HLA alleles, HLA-B�57/58:01/81:01, the same Gag-specific CD8+ T-cell responses
are generated as have been well-described in adults, driving the same immune selection pres-
sure, and in some cases these appear to contribute to slow progression in these children. There
is evidence for this in the published literature [30,31,34], and also in the current study, in
which we observed a modest impact on VRC in children expressing HLA-B�57/58:01/81:01
(Fig 3A and 3C), a moderate increase in children expressing these alleles in the slow progres-
sors with the highest CD4 counts (Fig 6A), and examples of HLA-B�57/58:01/81:01 CD8+ T-
cell pressure driving the selection of Gag escape mutants that reduce VRC (S2 Table), just as in
adults. However, it is equally clear from these studies that the impact of these protective and
also of the disease-susceptible HLA alleles is substantially less in pediatric than adult HIV
infection.

Potential reasons for diminished HLA effect in children are suggested by the data presented
showing rapid progression in children in spite of expressing the protective HLA-B�57/58:01/
81:01 alleles and, at least in some cases, in spite of the classical Gag-specific CD8+ T-cell
responses being detectable at highly respectable levels. The precise reasons why these CD8+ T-
cell responses appear to have been ineffective in these children would be of interest to define
further. However, a number of more general factors have been identified that mitigate against
effective CD8+ T-cell responses being generated in infancy, foremost amongst these being the
consequences of immune ontogeny [59], and the bias of CD4 T cells in infancy to make Th2
type responses. This in turn may reflect the inability of innate immune cells in the infant to
produce IL-12, in contrast with high production of the immunomodulatory cytokine IL-10
[59].

It is important also to consider the limitations of this study. One of these is the fact that we
assessed VRC in the rapid progressor children at mean age 14 months and in the slow progres-
sor children at mean age 7.5 years. Ideally we would have measured VRC in the slow progressor
children at the same age as in the rapid progressors. However this would have necessitated fol-
low up of a cohort of HIV-infected children from birth, and most of these children were not
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identified until>5yrs of age. However, a small longitudinal study was previously undertaken
by our group, of VRC in 8 HIV-infected children followed from birth, comprising 3 ‘progres-
sors’ and 5 ‘slow progressors’ [35]. The conclusions of that longitudinal study, that VRC is
higher in progressors than in slow progressors, and that the lower VRC observed in slower pro-
gressors is lower from early in the course of infection, are consistent with those of the current
study. However, it would be useful to undertake longer follow up of VRC over the course of
infection to determine whether any predictable pattern of VRC changes over time exists. On
the one hand it might be expected that escape mutants accumulating over the course of infec-
tion might decrease VRC, whilst on the other hand the accumulation of compensatory mutants
might increase VRC over time.

With regard to the other potential limitations of this study, it is clear that viral replicative
capacity is not solely dependent upon mutations within gag and pro but also in genes elsewhere
in the genome. Furthermore, it is important to note that a range of factors, in addition to CD8
+ T-cells, operate to impose selection pressure on the virus, including neutralizing antibodies
and influences affecting viral tropism. However, the justification for focusing on the Gag-Pro
region as we have done here is as follows. First, there is strong evidence that Gag-specific CD8
+ T-cell epitopes play a central role in immune control of HIV, and that the fitness cost of Gag
escape mutants contributes to the impact of protective HLA molecules such as HLA-B�57
[5,12–20,47]. Although studies of the fitness cost of CD8+ T-cell escape mutations outside of
Gag-Pro are less extensive than within Gag, the available evidence suggests that escape mutants
in proteins such as Env are less likely to carry a fitness cost [24–26].

Second, in several studies, the biological relevance of the Gag-Pro assay has been demon-
strated by the correlations with markers of disease progression (namely, absolute CD4 count
and viral load) [18,45,47–51]. Thus, in order to examine the impact of specific HLA-associated
sites within Gag, the optimal way to do that would using an isogenic backbone to generate
Gag-Pro recombinant chimeric viruses as we have done here.

The third point in favor of this assay is that, in practical terms, generating a full-length repli-
cation competent clone from each subject isolate is a labor-intensive and costly process. This
illustrates why, when we previously adopted that approach, in the only report to date to mea-
sure directly VRC in infected children, the study was limited to n = 8 [35]. In contrast, here we
have determined VRC in more than 15 times that number of subjects. Finally, at the end of the
process of isolating full-length viruses, unless many hundreds of virus clones are assayed, there
are too may mutations across the whole viral genome to determine which has contributed to
differences in replication capacity. A practical approach therefore to address the impact of
HLA on VRC is the one adopted here.

Together these data suggest that VRC, and the impact that HLA has on VRC, plays an
important role in disease progression in adult and pediatric infection. However, these data also
would indicate that VRC is by no means the only factor that influences rate of disease progres-
sion in pediatric infection. Furthermore, in infected children, the effect of HLA on outcome
that is independent of VRC appears to be limited. The difference in HLA impact between
adults and children may reflect the fact that distinct mechanisms may operate to limit disease.
In adults, the route to immune control and consequent disease limitation appears to lie, at least
in part, in an effective CD8+ T-cell response, such as that restricted by protective HLA alleles,
that can bring down viral load to low levels. In pediatric infection, non-pathogenicity is weakly
related to HLA and viral load [63]. In contrast to adult infection, persistently high viral loads in
pediatric slow progressors are observed in association with low levels of immune activation
[63], with similarities to the natural hosts of SIV infection [64]. Pediatric slow progressors thus
now provide the opportunity to address in humans a central, unanswered question in relation
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to HIV pathogenesis, namely, the mechanisms underlying low immune activation in the face
of persistently high viremia.

Supporting Information
S1 Fig. Phylogenetic tree of Gag sequences derived from 33 patient plasma samples and
Gag-Pro chimeric viruses. A. A maximum-likelihood tree was constructed using PHYm131
(http://www.hiv.lanl.gov). “C” denotes a child isolate and “M” donates a maternal isolate. Each
mother-child pair carries the same number, for example K140C and K140M represent the
K140 mother-child pair. The scale represents substitutions per site. V represents chimeric virus
sequence, P represents plasma virus sequence. B. The deduced Gag amino acid sequences
determined from plasma virus and from the Gag-Pro-chimeric virus were compared for each
of the 33 subjects. The percent amino acid identity was determined for each subject after exclu-
sion of codons including mixed bases, as previously described [18,45,47,48].
(TIF)

S2 Fig. Relationship between viral load and VRC and absolute CD4 count in pediatric
study subjects. A. Viral load versus absolute CD4 count in ART-naïve children of 5 yrs age. B.
Viral load versus absolute CD4 count in ART-naïve children of 7.5 yrs age. C. Viral load versus
VRC using viral loads at 5yrs age in pediatric study subjects. D. Viral load versus VRC using
viral loads at 7.5yrs age in pediatric study subjects.
(TIF)

S3 Fig. Phylogenetic tree of Gag sequences derived from patient plasma samples. Amaxi-
mum-likelihood tree was constructed using PHYm131 (http://www.hiv.lanl.gov). “C” denotes
a child isolate and “M” donates a maternal isolate. Each mother-child pair carries the same
number, for example K140C and K140M represent the K140 mother-child pair. The scale rep-
resents substitutions per site.
(TIF)

S4 Fig. VRC compared with number of Gag-specific CD8+ T-cell escape mutations in rapid
and slow progressor children. A-B: HLA-B�57/58:01/81:01-associated Gag mutants. A. Slow
progressors. B. Rapid progressors. C-D. Gag-specific CD8+ T-cell mutations within defined
epitopes (listed in S1 Table). A. Slow progressors B. Rapid progressors.
(TIF)

S5 Fig. Impact of Gag CD8+ T-cell mutations (listed in S1 Table) in adults expressing dis-
ease susceptible HLA.
(TIF)

S1 Table. Gag-specific CD8+ T-cell mutations within defined epitopes (refs 11, 15, 45, 46).
(TIF)

S2 Table. Representative autologous mother (M) and child (C) Gag sequences within epi-
topes restricted by protective HLA-B alleles B�57/B�58:01/81:01 to demonstrate occurrence
of escape within selected slow progressor children.Mutations shown; A146X and I147X
within the HLA-B�57 restricted epitope ISPRTLNAW (ISW9, Gag 147–155); A163X and
S165X within the HLA-B�57-restricted epitope KAFSPEVIPMF (KF11, Gag 162–172); Q182X
and T186S within the HLA-B�81:01-restricted epitope TPQDLNTML (TL9, Gag 180–188);
and T242X and I247X within the HLA-B�57/58:01-restricted epitope TSTLQEQIAW (TW10,
Gag 240–249).
(TIF)
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