122 research outputs found

    Origin of the Sinai-Negev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history

    Get PDF
    The Sinai-Negev erg occupies an area of 13,000 km2 in the deserts of Egypt and Israel. Aeolian sand of this erg has been proposed to be derived from the Nile Delta, but empirical data supporting this view are lacking. An alternative source sediment is sand from the large Wadi El Arish drainage system in central and northern Sinai. Mineralogy of the Negev and Sinai dunes shows that they are high in quartz, with much smaller amounts of K-feldspar and plagioclase. Both Nile Delta sands and Sinai wadi sands, upstream of the dunes, also have high amounts of quartz relative to K-feldspar and plagioclase. However, Sinai wadi sands have abundant calcite, whereas Nile Delta sands have little or no calcite. Overall, the mineralogical data suggest that the dunes are derived dominantly from the Nile Delta, with Sinai wadi sands being a minor contributor. Geochemical data that proxy for both the light mineral fraction (SiO2/10-Al2O3 + Na2O + K2O-CaO) and heavy mineral fraction (Fe2O3-MgO-TiO2) also indicate a dominant Nile Delta source for the dunes. Thus, we report here the first empirical evidence that the Sinai-Negev dunes are derived dominantly from the Nile Delta. Linkage of the Sinai-Negev erg to the Nile Delta as a source is consistent with the distribution of OSL ages of Negev dunes in recent studies. Stratigraphic studies show that during the Last Glacial period, when dune incursions in the Sinai-Negev erg began, what is now the Nile Delta area was characterized by a broad, sandy, minimally vegetated plain, with seasonally dry anastomosing channels. Such conditions were ideal for providing a ready source of sand for aeolian transport under what were probably much stronger glacial-age winds. With the post-glacial rise in sea level, the Nile River began to aggrade. Post-glacial sedimentation has been dominated by fine-grained silts and clays. Thus, sea level, along with favorable climatic conditions, emerges as a major influence on the timing of dune activity in the Sinai-Negev erg, through its control on the supply of sand from the Nile Delta. The mineralogy of the Sinai-Negev dunes is also consistent with a proposed hypothesis that these sediments are an important source of loess in Israel

    Canadian and English students' beliefs about waterpipe smoking: a qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Waterpipe smoking is becoming popular among western students. The aim was to understand the appeal to students of this form of smoking when other forms of smoking are becoming less common.</p> <p>Methods</p> <p>Waterpipe smokers were identified by snowball sampling and interviewed following a semi-structured schedule in waterpipe cafes and in their homes. Constant comparative analysis was used to derive themes for the analysis.</p> <p>Results</p> <p>Waterpipe smokers saw smoking as an alternative to more expensive nights out in bars. The appeal was related to the communal activity and the novelty of the experience. Respondents had not thought deeply about the health risks and reasoned that if no warnings about waterpipe smoking were apparent (unlike cigarette smoking) then it was probably safe. These observations were reinforced by observations about the mildness of the smoke, the fruit flavours, and beliefs about the filtering of the water. Waterpipe smokers felt no pressure to stop smoking and therefore had not tried to do so, but felt it might be something they did not continue after university. Waterpipe smoking was not linked in students' minds to other forms of smoking except in one individual who was using waterpipe smoking to help quit cigarettes.</p> <p>Conclusion</p> <p>In the absence of public health information, students have fallen back on superficial experiences to form views that waterpipe smoking is less harmful than other forms of smoking and it is currently much more acceptable in student society than other forms of smoking.</p

    ENCODE whole-genome data in the UCSC genome browser (2011 update)

    Get PDF
    The ENCODE project is an international consortium with a goal of cataloguing all the functional elements in the human genome. The ENCODE Data Coordination Center (DCC) at the University of California, Santa Cruz serves as the central repository for ENCODE data. In this role, the DCC offers a collection of high-throughput, genome-wide data generated with technologies such as ChIP-Seq, RNA-Seq, DNA digestion and others. This data helps illuminate transcription factor-binding sites, histone marks, chromatin accessibility, DNA methylation, RNA expression, RNA binding and other cell-state indicators. It includes sequences with quality scores, alignments, signals calculated from the alignments, and in most cases, element or peak calls calculated from the signal data. Each data set is available for visualization and download via the UCSC Genome Browser (http://genome.ucsc.edu/). ENCODE data can also be retrieved using a metadata system that captures the experimental parameters of each assay. The ENCODE web portal at UCSC (http://encodeproject.org/) provides information about the ENCODE data and links for access

    Impact of somatic and germline mutations on the outcome of systemic mastocytosis

    Get PDF
    [EN]Systemic mastocytosis (SM) is a highly heterogeneous disease with indolent and aggressive forms, with the mechanisms leading to malignant transformation still remaining to be elucidated. Here, we investigated the presence and frequency of genetic variants in 34 SM patients with multilineal KIT D816V mutations. Initial screening was performed by targeted sequencing of 410 genes in DNA extracted from purified bone marrow cells and hair from 12 patients with nonadvanced SM and 8 patients with advanced SM, followed by whole-genome sequencing (WGS) in 4 cases. Somatic mutations were further investigated in another 14 patients with advanced SM. Despite the fact that no common mutation other than KIT D816V was found in WGS analyses, targeted next-generation sequencing identified 67 nonsynonymous genetic variants involving 39 genes. Half of the mutations were somatic (mostly multilineal), whereas the other half were germline variants. The presence of ≥1 multilineal somatic mutation involving genes other than KIT D816V, ≥3 germline variants, and ≥1 multilineal mutation in the SRSF2, ASXL1, RUNX1, and/or EZH2 genes (S/A/R/E genes), in addition to skin lesions, splenomegaly, thrombocytopenia, low hemoglobin levels, and increased alkaline phosphatase and β2-microglobulin serum levels, were associated with a poorer patient outcome. However, the presence of ≥1 multilineal mutation, particularly involving S/A/R/E genes, was the only independent predictor for progression-free survival and overall survival in our cohort

    A Solution to the Crimean Crisis: Egalitarian Shared Sovereignty applied to Russia, Ukraine, and Crimea

    Get PDF
    Sovereignty is intrinsic to conflict in international relations. There are various sovereignty disputes around the world caught between legal and political limbo, the status quo and continuous tension, with various negative consequences for all the parties involved. It is increasingly clear that the available remedies have been less than successful, and that a peaceful and definitive solution is needed. The essay considers how theories of distributive justice, and particularly the hypothetical thought experiments proposed by Rawlsian theory, can be used productively with the concept of sovereignty and explores the possibility of a solution for sovereignty conflicts such as the Crimean case by the application of a Rawlsian methodology

    Identification and Classification of Conserved RNA Secondary Structures in the Human Genome

    Get PDF
    The discoveries of microRNAs and riboswitches, among others, have shown functional RNAs to be biologically more important and genomically more prevalent than previously anticipated. We have developed a general comparative genomics method based on phylogenetic stochastic context-free grammars for identifying functional RNAs encoded in the human genome and used it to survey an eight-way genome-wide alignment of the human, chimpanzee, mouse, rat, dog, chicken, zebra-fish, and puffer-fish genomes for deeply conserved functional RNAs. At a loose threshold for acceptance, this search resulted in a set of 48,479 candidate RNA structures. This screen finds a large number of known functional RNAs, including 195 miRNAs, 62 histone 3′UTR stem loops, and various types of known genetic recoding elements. Among the highest-scoring new predictions are 169 new miRNA candidates, as well as new candidate selenocysteine insertion sites, RNA editing hairpins, RNAs involved in transcript auto regulation, and many folds that form singletons or small functional RNA families of completely unknown function. While the rate of false positives in the overall set is difficult to estimate and is likely to be substantial, the results nevertheless provide evidence for many new human functional RNAs and present specific predictions to facilitate their further characterization

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Habilidades e avaliação de executivos

    Full text link

    A user's guide to the Encyclopedia of DNA elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome
    corecore