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a b s t r a c t

The SinaieNegev erg occupies an area of 13,000 km2 in the deserts of Egypt and Israel. Aeolian sand of
this erg has been proposed to be derived from the Nile Delta, but empirical data supporting this view
are lacking. An alternative source sediment is sand from the large Wadi El Arish drainage system in
central and northern Sinai. Mineralogy of the Negev and Sinai dunes shows that they are high in quartz,
with much smaller amounts of K-feldspar and plagioclase. Both Nile Delta sands and Sinai wadi sands,
upstream of the dunes, also have high amounts of quartz relative to K-feldspar and plagioclase.
However, Sinai wadi sands have abundant calcite, whereas Nile Delta sands have little or no calcite.
Overall, the mineralogical data suggest that the dunes are derived dominantly from the Nile Delta, with
Sinai wadi sands being a minor contributor. Geochemical data that proxy for both the light mineral
fraction (SiO2/10eAl2O3 þ Na2O þ K2OeCaO) and heavy mineral fraction (Fe2O3eMgOeTiO2) also
indicate a dominant Nile Delta source for the dunes. Thus, we report here the first empirical evidence
that the SinaieNegev dunes are derived dominantly from the Nile Delta. Linkage of the SinaieNegev erg
to the Nile Delta as a source is consistent with the distribution of OSL ages of Negev dunes in recent
studies. Stratigraphic studies show that during the Last Glacial period, when dune incursions in the
SinaieNegev erg began, what is now the Nile Delta area was characterized by a broad, sandy, minimally
vegetated plain, with seasonally dry anastomosing channels. Such conditions were ideal for providing a
ready source of sand for aeolian transport under what were probably much stronger glacial-age winds.
With the post-glacial rise in sea level, the Nile River began to aggrade. Post-glacial sedimentation has
been dominated by fine-grained silts and clays. Thus, sea level, along with favorable climatic conditions,
emerges as a major influence on the timing of dune activity in the SinaieNegev erg, through its control
on the supply of sand from the Nile Delta. The mineralogy of the SinaieNegev dunes is also consistent
with a proposed hypothesis that these sediments are an important source of loess in Israel.

Published by Elsevier Ltd.

1. Introduction

Many of the world’s largest ergs, or aeolian sand seas, are found
over a vast area of the subtropical zones of the Sahara Desert of
Africa and the Arabian Peninsula, with a total dunefield area well
in excess of 3 million km2 (Pye and Tsoar, 2009). Dunefields over
this region have tremendous importance for paleoclimate studies,
as the presence of dunes indicates strong winds or low precipi-
tation (<100 mm) either at present or in the past, as well as an

availability of source sediments and lack of stabilizing vegetation
in the source area. Furthermore, the orientation of inactive dunes
gives important clues for paleowind directions in the past. Thus,
dune geomorphology constitutes one of the most robust, direct
records of past atmospheric circulation, aridity, wind strength and
paleohydrology.

The advent of optically stimulated luminescence (OSL) dating
(see review in Singhvi and Porat, 2008) has revolutionized paleo-
climatic studies of dunes, as the only requirement is the presence of
quartz, which is rarely an issue with aeolian sand. Recent studies of
the dunefields in the Sahara, the SinaieNegev erg, and the Arabian
Peninsula, with good OSL geochronology, have yielded important
paleoclimatic information in Mauritania (Lancaster et al., 2002),

* Corresponding author. Tel.: þ1 303 236 7919.
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Egypt and Sudan (Bubenzer et al., 2007), Israel (Roskin et al., 2011a,
2011b) and Arabia (Goudie et al., 2000; Preusser et al., 2002, 2005;
Atkinson et al., 2011, 2012), as well as regional syntheses (Swezy,
2001; Glennie and Singhvi, 2002; Lancaster, 2007, 2008; Singhvi
and Porat, 2008). One conclusion common to these studies is that
dunes over a wide region were very active during the Last Glacial
Maximum (LGM), but dune activity diminished at the close of the
Last Glacial period, a concept articulated earlier by Sarnthein
(1978). During the post-LGM period and in the late Holocene,
dune activity resumed in many of these regions.

More than one forcing mechanism is possible for the shift from
intense Last Glacial and post-glacial dune activity followed by
early-to mid-Holocene dune stability in the Sahara and Arabian
Peninsula. Increased moisture at the beginning of the Holocene
could have been supplied by insolation-forced northward migra-
tion of the intertropical convergence zone, or ITCZ (Bernhardt et al.,
2012). This has been referred to as the African Humid Period
(w15 kae5.5 ka) and is well established as a period of diminished
dust accumulation in the early-to mid-Holocene, based on studies
of marine cores off Africa in both the Atlantic (DeMenocal et al.,
2000) and the Mediterranean (Hamann et al., 2008, 2009). Dur-
ing such a humid period, sand supplies to dunes in some parts of
the regionmay have been cut off by the growth of Holocene lakes in
basins that previously provided sediment (ultimately from fluvial
sources) to active dunes (Lancaster, 2008). In coastal regions, such
as the southern part of the Wahiba Sand Sea of Oman, sea level
history may have played a role in diminishing sand supply by post-
glacial sea level rise (Radies et al., 2004; Preusser et al., 2005).
Whether sediment supplies to feed actively migrating dunes are a
function of climate in the source area, regional hydrology, or sea
level fluctuations requires identification of the source sediment of
the dunefield, but few studies in the Sahara Desert or Arabian
Peninsula have been undertaken to determine provenance of dune
sands.

Sand dunes and their histories have significance in other aspects
of sedimentation history and landscape evolution. Although abra-
sion of sand grains and size reduction due to ballistic impacts have
been recognized for a long time as a possible source of loess and
finer grained dust (see reviews in Muhs and Bettis, 2003; Muhs,
2013), there has been considerable emphasis on the importance
of this process in subtropical deserts in recent years (Crouvi et al.,
2008, 2010, 2012; Enzel et al., 2008, 2010; Amit et al., 2011). In
these latter studies, the SinaieNegev erg is proposed to be at least a
partial source of loess in Israel, downwind of the dunefield.

In this study, we examine the composition of dune sands from
the Negev Desert of Israel and the Sinai Desert of adjacent Egypt,
situated between the vast deserts of the Sahara and Arabia (Fig. 1).
As pointed out by Tsoar et al. (2008) these two dunefields (Sinai and
Negev) are geomorphically part of the same sand sea; their division
into two landscape entities is due solely to the political boundary
that separates them. Studies by Goring-Morris and Goldberg
(1990), using archeology and radiocarbon dating, and by Enzel
et al. (2010) and Roskin et al. (2011a, 2011b), using OSL geochro-
nology, show that dunes of the SinaieNegev erg, like other dune-
fields in the Sahara Desert-Arabian Peninsula region, were active
during the Last Glacial period, the post-glacial period and the latest
Holocene, but show little evidence of activity during the early-to
mid-Holocene.

Determination of the source of sand in the SinaieNegev erg is a
major goal of our study. To the best of our knowledge, one sedi-
ment source alone has been proposed for the SinaieNegev erg,
sand from the Nile Delta. Emery and Neev (1960) inferred a Nile
source for the non-carbonate component of beach sands on the
Mediterranean coast of Israel and Pomerancblum (1966) reported
that continental shelf sands off this coast were Nile-derived as

well. Nachmias (1969) reported a Nile source for Tertiary Saqiye
Group sediments found in Israel. All these studies inferred Nile
origins using heavy mineral analyses. Davis et al. (2012) propose
that the Nile has been a major source for aeolian sediments in
Israel for the pastw2.5 million years, based on cosmogenic isotope
evidence from quartz. Nevertheless, identification of the Nile as a
source for the SinaieNegev erg sands seems to have been both a
working assumption and an untested hypothesis (Neev et al., 1987;
Goring-Morris and Goldberg, 1990; Pye and Tsoar, 2009; Amit
et al., 2011; Roskin et al., 2011b, 2012). The best argument for a
Nile Delta source is the simple lack of evidence for other likely
sources (Tsoar et al., 2008). Nevertheless, the lack of an alternative
source does not actually prove a Nile Delta source. Further, the
inference of derivation of quartz-rich dunes from what seems at
first glance to be an obvious Nile Delta source is problematic. Sneh
and Weissbrod (1983) report that dune sand in Sinai is composed
of w95% or more quartz, and Roskin et al. (2011b) present pre-
liminary data showing that dunes in the Negev part of the erg are
also quartz-rich. However, recent petrographic and isotopic data
show that Nile River sands are, at present, derived primarily from
two major tributaries in the upper part of the drainage basin, the
Blue Nile and Wadi Atbara. The White Nile contributes at most
w3% (Garzanti et al., 2006; Padoan et al., 2011). Both the Blue Nile
and Wadi Atbara drain rocks of the Ethiopian Plateau that are
dominated by Cenozoic basalts (Pik et al., 1998), rocks that do not
contain quartz. Thus, in this study, we also examine the compo-
sition of probable late Pleistocene age, dune-sand-sized sediments
of the Nile Delta.

Other possible quartz-rich sources for the SinaieNegev erg are
very limited. Areas in central Sinai within the Wadi El Arish
drainage basin have bedrock dominated by Cretaceous or Eocene
rocks. Although these rocks are composed mostly of carbonate
facies, Bartov (1990) reports that sandstone facies are also present
in two of the Cretaceous units. These rocks are situated in the upper
drainage basin area ofWadi El Arish (Figs.1 and 2) and thus provide
a source that is upstream and upwind of much of the SinaieNegev
erg. Farther north, in north-central Sinai, Lower Cretaceous sand-
stones, now part of what is called the Kurnub Group (Bartov, 1990),
were formerly referred to as “Nubian Sandstone.” These rocks are
downwind of many of the dunes in the erg, however, so at most
they constitute a potential source for only part of the erg. To test the
competing hypotheses of the Nile Delta versus local rocks in Sinai
for the source of the SinaieNegev erg, we conducted studies of the
mineralogy of the dune sands and these possible source sediments.

Study of the SinaieNegev erg mineralogy also allows us to test
the hypothesis that abrasion of sand-sized particles is the source for
loess in Israel that is found downwind of the SinaieNegev erg
(Fig. 1). Crouvi et al. (2008, 2010, 2012), Enzel et al. (2008, 2010),
and Amit et al. (2011) have emphasized the importance of this
dunefield in supplying silt-sized quartz, generated by aeolian
abrasion of sand-sized quartz, to loess downwind. If reduction of
sand-sized quartz to silt size by aeolian abrasion has occurred, then
other minerals in the SinaieNegev erg should also be affected by
this process. Experimental work by Kuenen (1960) and Dutta et al.
(1993) shows that aeolian abrasion and ballistic impacts can effi-
ciently reduce sand-sized feldspars to silt sizes. Kuenen’s (1960)
studies show that both sand-sized feldspars and carbonate min-
erals abrade to finer sized particles much more quickly than does
quartz. Thus, if dune sands of the SinaieNegev erg provide some of
the particles to the loess bodies downwind of the dunefield by
aeolian abrasion of quartz, they should also contribute a propor-
tionally greater amount of feldspar and calcite, because these latter
minerals are less resistant to aeolian abrasion. The evidence for this
should be a dunefield whose mineralogy is measurably more
quartz-rich than that of the loess found downwind.
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2. Study area: the SinaieNegev erg

2.1. Geomorphology

The SinaieNegev erg occupies a total area of w13,000 km2

(Roskin et al., 2011b), making it a moderate-sized sand sea
compared to some of the larger ergs in the Sahara-Arabian
Peninsula region. Although the Negev Desert portion of the
SinaieNegev erg has been studied in detail recently (Blumberg
et al., 2004; Tsoar et al., 2008; Roskin et al., 2011a, 2011b), far
less study has been made of the dunes in Sinai. We mapped the

extent of the dunes and identified dune types in this region, using
Landsat 5 TM imagery (band 1, blue) from 1984 to 1986 and
Landsat 7 ETM imagery (band 8) from 1999, augmented by ex-
amination of SPOT imagery. The extent of aeolian sand in Sinai was
mapped by identifying areas with: (1) typical dune geomorphic
expression, such as linear or barchan forms; (2) high returns on
black-and-white imagery in these spectral bands, indicating a
dominance of highly reflective minerals such as quartz, with a
minimal vegetation cover; and (3) evidence of a surficial cover that
masks preexisting drainage. Our mapping (Fig. 2), although done
independently, is in good agreement with previous mapping of
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aeolian sand in Sinai by Neev et al. (1982), Sneh and Weissbrod
(1983) and Bartov (1990).

All investigators who have studied the SinaieNegev erg have
recognized that there are a number of different dune forms in this
sand sea (Tsoar, 1974, 1984, 1989; Neev et al., 1982; Sneh and
Weissbrod, 1983; Rubin et al., 2008; Tsoar et al., 2008; Roskin

et al., 2011a, 2011b, 2012, in press; Hermas et al., 2012). By far the
most common landforms are linear dunes (Fig. 3). In Sinai, these
take the form of seif dunes, characterized by a sinuous dune crest
that has steep slopes on both sides of the crest. Complex linear
dunes are also present. Seif dunes in Sinai are mostly 2e5 km long
(Tsoar, 1995), measured along their long axes, but we also observed
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dunes as long as 7e14 km, mostly in the southwestern part of the
erg, where their long axes trend northwest-to-southeast (Fig. 2; see
also Tsoar et al., 2004). Rubin et al. (2008) reexamined the dunes
studied by Tsoar et al. (2004) and found lateral migration of seif
dunes on the order of w13 m over a 26-year period. North of this
region, but still in the western part of the erg, smaller seif dunes
generally trend southwest-to-northeast. In the north-central part
of Sinai, linear dunes are oriented northwest-to-southeast,
although in some places they trend west-to-east (see also Tsoar,
1995). In northeastern Sinai, and continuing into the Negev
Desert of Israel, the largest linear dunes have long axes that trend
west-to-east, indicating a westerly paleowind. Superimposed on
the largest linear dunes in this region, however, are younger
“dunelets,” or smaller dunes, with orientations that imply paleo-
winds from the southwest (Roskin et al., 2011a), similar to modern
wind directions in the area.

In a few regions of Sinai, the dominant landforms are barchan
dunes. Most areas of barchans that wemapped are inwestern Sinai,
although a few are also found in the southernmost part of the
dunefield, to the north of Wadi Burukh and Wadi El Arish (Fig. 2).
Measured from downwind arm to downwind arm, most barchans
we observed arew400e800mwide, although some are as much as
w1000 m wide. In southwestern Sinai, barchans have arms that
point to the southeast, consistent with the larger linear dunes
found to the west of the barchans (Fig. 2). The same orientation is
found with much smaller barchans in an isolated dune tract in the
central part of the erg, where several of our samples were collected.
Elsewhere in Sinai, barchans have arms that point to the northeast,
again consistent with the orientations of linear dunes that are
found near them. Tsoar (1984) showed that what were originally
barchans are currently being modified into linear (seif) forms in the
area south of the city of El Arish.

The dunes that dominate the Negev Desert portion of the Sinaie
Negev erg are referred to as vegetated linear dunes, or VLDs (Tsoar

et al., 2004, 2008). They differ from seif dunes not only because
they are vegetated, but also because they do not have ameandering
form. Furthermore, VLDs are characterized by blunt crest lines and
round profiles. In the Negev Desert and elsewhere, VLDs sometimes
converge into a Y-junction, discussed in more detail by Tsoar et al.
(2004, 2008).

Dunes on opposite sides of the EgyptianeIsraeli border in the
SinaieNegev erg show very different degrees of activity. On the
Egyptian side, dunes in most of the erg are unvegetated and fully
active (Figs. 3 and 4), so much so that they have been considered a
hazard to farmland, roads, and infrastructure (Misak and Draz,
1997). Although interdune areas are often vegetated, the crests
and sides of dunes in Sinai host little or no vegetation. In contrast,
dunes on the Israeli side of the border, in the Negev Desert, are
mostly inactive. Ripple marks, indicating some contemporary
movement of sand, are apparent on some dune crests, but most
dunes are stabilized by vegetation (Figs. 3 and 4). The stabilizing
vegetation includes shrubs such as sage (Artemisia monosperma)
and other low-growing vascular plants, but far more important is
the presence of biological soil crusts. Tsoar and Karnieli (1996)
showed a progressive increase in biological soil-crust cover on
the Israeli side of the border, using Landsat MSS imagery from 1984
to 1989. The dramatic difference in degree of vegetation cover is
visible on Landsat TM imagery (Fig. 3), MODIS imagery, and thermal
imagery from NOAA-AVHRR 14 data (Qin et al., 2001). The contrast
in degree of activity is apparently caused by Bedouin animal
trampling and grazing of vegetation, which is intense on the
Egyptian side and absent on the Israeli side (Tsoar, 2008).

2.2. Stratigraphy and geochronology

Simple field observations yield important clues that the dunes
in the SinaieNegev erg may have a long geologic history. Exami-
nation of Landsat imagery shows that the southwest-to-northeast

(B) Linear dunes, Negev Desert, Israel(A) Sinai (Egypt)/Negev (Israel)
border area

(C) Soil crust on dune, 
Tzidkiyahu, Negev, Israel

(D) Active linear dunes, Sinai, Egypt (west of Halamish)

ISRAEL
EGYPT

Vegetated 
linear
dunes

Fig. 4. Photographic gallery of typical vegetated or partially vegetated dune types in the Negev Desert of Israel [(A) and (B)], biologic soil crust that typically stabilizes these dunes
[(C)], and unvegetated seif dune in the Sinai Desert of Egypt [(D)].
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linear dunes found in the peninsula jutting into Bardawil Lagoon
(Fig. 2) are “drowned” landforms. These dunes, some of which
extend over most of the eastewest extent of the peninsula, are
surrounded by the lagoon on the west, east, and north sides of the
peninsula and have no apparent source to the southwest. Thus, the
presence of these southwestenortheast-trending dunes on a
peninsula situated within a lagoon requires formation during a
time when sea level was lower, most likely during the Last Glacial
period. Orientations of both linear dunes and barchans in the
southwestern part of the Sinai dunefield imply paleowinds from
the north, which differs from the resultant drift directions (RDD) of
the present, based on observations at Port Said and Ismailia, Egypt
(Fig. 2). Roskin et al. (2011a) noted that the largest VLDs of the
Negev have long axes that also indicate paleowinds that differ from
the present winds. Collectively, these observations indicate that at
least some of the dunes in the SinaieNegev erg formed under
conditions different from those of the present, or at least what is
represented by the period of wind records.

Early studies suggest that much aeolian activity took place
during the Last Glacial period. Goring-Morris and Goldberg (1990)
observed the relation of dune deposits to archeology in both Sinai
and the Negev and inferred a Last Glacial period of major aeolian
sand sedimentation. Rendell et al. (1993) presented stratigraphic
and thermoluminescence (TL) data that suggested dune incursions
into the Negev Desert could have taken place during the latest
Pleistocene, but inverted TL ages at two sites make these in-
terpretations tenuous. Harrison and Yair (1998) reported that
interdune depressions in the Negev portion of the erg have a
stratigraphy (overbank silts with intercalated paleosols) that imply
several thousands of years of alternating sediment accumulation
and stability between the dunes during the Pleistocene. Finally,

Enzel et al. (2010) showed that coarse, sandy, fluvially reworked
loess in parts of the Negev Desert overlies aeolian sand. OSL ages of
the basal portions of the loess are w11 ka and the uppermost
aeolian sand has an OSL age of w13 ka. There is also evidence for
Holocene dune activity. Tsoar and Goodfriend (1994) reported
radiocarbon ages of aeolian sand in the Negev Desert indicating
multiple dune incursions into this region in the Holocene.

Despite the inferences from these early studies, numerical age
control of dunes in the SinaieNegev erg has been generally lacking
until the first systematic and widespread program of OSL
geochronology was undertaken by Roskin et al. (2011a, 2011b).
These stratigraphic and geochronologic studies provide a detailed
history of the Negev portion of the erg. On a northesouth transect
(Fig. 3) from Haluzit to Nahal Nizzana (“Nahal” is wadi or drainage
in Hebrew), the dunes are underlain by a distinctive, though
probably eroded, paleosol developed in what Roskin et al. (2011b)
infer may have been aeolian sheet sands (Fig. 5). This paleosol,
although truncated, has abundant silt that Roskin et al. (2011b)
interpret to have been added syndepositionally while pedogen-
esis was in progress. Analyses of the sand fractions from this
paleosol yield OSL ages of 116 to 106 ka at two localities andw30 ka
at a third locality. Thus, the aeolian sand in which this paleosol
developed could have been deposited as early as the latter part of
the Last Interglacial period. Aeolian sand is found above the pale-
osol across a northesouth distance ofw20 km ormore in the Negev
part of the erg (Fig. 5). Windblown sand, typically 5e25 m thick, is
apparent in both VLDs and in interdune areas between the linear
dunes. OSL ages show that dunes in the Negev portion of the erg
began to accumulate as early as w23 ka in the southwest corner of
the dunefield. Following the LGM atw21 ka (in calendar years), the
dunes invaded the northwestern part of the Negev along three
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Fig. 5. Northesouth topographic profile from Haluzit, Israel to Nahal Lavan (see Fig. 3 for localities) showing Negev Desert dune topography, stratigraphy, and OSL ages in ka.
Redrawn from Roskin et al. (2011b).
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main westeeast encroachment corridors (Fig. 3), during three pe-
riods. The main dune-encroachment period occurred between 18
and 11.5 ka (Roskin et al., 2011b), and thick aeolian sand deposits
accumulated in thewestern Negev dunefield. Enzel et al. (2010) and
Roskin et al. (2011a) suggested that dune elongation occurred in a
windy climate during the Heinrich 1 and Younger Dryas cold events
and further that the eastern dunefield developed mainly in the
Younger Dryas. Additional incursions or remobilizations due to
human impact have been dated to the late Holocene (w2e0.8 ka)
and modern times (<150 yrs), respectively (Roskin et al., 2011b,
in press). Between these episodes, the dunes were usually quasi-
stable and probably at least partially encrusted (Roskin et al.,
2011b).

We examined the sediments in one dune exposure in some
detail, at a locality called Mitvakh along the southwestern margin
of the Negev portion of the dunefield (Figs. 3 and 6). Here,w7 m of
dune sand are exposed and augering by Roskin et al. (2011b) in-
dicates that at least another w2 m of aeolian sand are present. At a
depth of w9.25 m, Roskin et al. (2011b) report an OSL age of
14.3 � 0.8 ka. The basal w2.5 m in the exposed portion contain
relatively high-angle (25e28�) dips to the northenortheast that we

interpret to be foreset beds. The apparent dips to the northe
northeast imply paleowinds from the southesouthwest, similar
to the present. Horizontal beds overlie the crossbeds and massive
sand overlies the horizontal beds. The massive sand contains both
land snail fragments and carbonate nodules. The carbonate nodules
increase in abundance in the meter above the massive sand, where
there is a zone again characterized by horizontal beds. Massive
sand caps the section in the uppermost meter and is overlain by
Byzantine artifacts (w1.7e1.4 ka).

The Mitvakh section illustrates the importance of OSL
geochronology and archeology in understanding dune history in
this region. The OSL age ofw14 ka at a depth ofw9m indicates that
aeolian sand accretion was in progress during the latter part of the
Last Glacial period. The presence of Byzantine (w1.7e1.4 ka) arti-
facts at the top of the section permits the possibility of late Holo-
cene activity possibly related to human impact. Nevertheless, no
well-developed paleosols, indicating periods of stability within
the section, were observed. The only possible evidence of a period
of stability is in the form of the carbonate nodules in the upper part
of the section, which may be the truncated remnants of a calcic
horizon in a paleosol that developed after the late Pleistocene

Fig. 6. Stratigraphy, ages and sedimentary structures in aeolian sand at Mitvakh, in the southern corridor of the Negev dunes (see Fig. 3 for location). Also shown are ratios of calcite
(29.4�) to quartz (20.8�) XRD peak heights, CaO þ LOI, Log [Na2O/K2O] values, Log [SiO2/Al2O3] values, and ranges of these values in Sinai wadi sands and Nile Delta sands, shown in
Fig. 14.

D.R. Muhs et al. / Quaternary Science Reviews 69 (2013) 28e4834



period of dune formation. If so, then the unbedded sand in the
upper meter of the section may have been deposited in the late
Holocene, just prior to Byzantine occupation. Many of the sections
shown in Fig. 5 illustrate a similar situation, where OSL ages indi-
cate that late Holocene active sand (due to human impact) overlies
late Pleistocene sand, but a paleosol representing an early-to mid-
Holocene period of stability is not apparent. Such paleosols, if
present at one time, apparently were eroded during the late Ho-
locene periods of dune activity.

3. Sampling and mineralogical and geochemical methods

Samples from the Negev portion of the dunefield (Figs. 2 and 3)
consist of aeolian sands of both Holocene and Pleistocene ages, as
outlined in Roskin et al. (2011a). Sands were also collected in more
detail from the Mitvakh section in the southern Negev
(N30�53057.200; E34�27036.500). Altogether, 138 samples from the
Negev were analyzed for mineralogy and of these, 99 were
analyzed for major element chemistry (29 from Mitvakh and 70
from elsewhere). Aeolian sands (20 samples) from the Sinai portion
of the erg (Fig. 2), collected in the 1970’s, were all analyzed for both
mineralogy and major element chemistry. In addition, we analyzed
13 samples of fluvial sediments (wadi sands) from Sinai (also
collected in the 1970’s) for both mineralogy and major element
chemistry. We limited our analyses of fluvial sediments in Sinai to
those samples that are upstream and upwind of the SinaieNegev
erg, in the Wadi El Arish drainage system (Fig. 2). In this fashion,
we avoid the problem of sediment recycling (from dunes into wadi
channels). For the Nile Delta, we used Holocene and Pleistocene
sediments from 8 cores (Fig. 7) collected by Stanley et al. (1996) and
archived in the Smithsonian Institution, Washington, D.C. This

collection consists ofw90 individual samples, mostly of Last Glacial
age (Fig. 7), all of which were analyzed for mineralogy and 28 of
which were analyzed for major element chemistry. For comparison
with the SinaieNegev erg sands, we also collected 12 samples of
late Pleistocene aeolianite, or “kurkar” (Ramat Gan and Dor units)
from a cliff section exposed on the Israeli Mediterranean coast at
Gaash (Fig. 8), w14 km north of Tel Aviv, studied by Porat et al.
(2004). In order to make comparisons with what has been called
the “Nubian Sandstone”, we collected Lower Cretaceous-age
sandstones of the Kurnub Group, probably correlative to the
Nubian Sandstone (Sneh et al., 1998), from exposures in Makhtesh
Ramon (or crater; also referred to locally as an erosional cirque) in
southern Israel (N30�37018.9300; E34�49003.0400). Correlation of the
rocks we collected in Makhtesh Ramon with “Nubian”-type sand-
stones found in northern Sinai is based on mapping of both as the
Kurnub Group (Bartov, 1990), location of both on the same tectonic
block, and similar thicknesses and mineralogy (Bartov et al., 1980;
Weissbrod et al., 1994; Kolodner et al., 2009).

All aeolian sands and bedrock samples in this study were
analyzed as bulk powders, with pulverization to a uniform particle
size being the only pretreatment. Sinai wadi sands and Nile Delta
sands were pretreated by removal of organic matter with H2O2 and
dispersion of clays using Na-pyrophosphate. After pretreatments,
silts and clays (<53 mm) and coarse sands (>500 mm)were removed
by wet sieving in order to produce a particle size distribution
similar to that found in aeolian sands; these separates were then
pulverized to powders for both mineralogical and chemical ana-
lyses. Mineralogy was determined semiquantitatively by X-ray
diffractometry. Relative abundances of quartz (20.8� 2q), K-feldspar
(27.4� 2q), plagioclase (27.8� 2q) and calcite (29.4� 2q) were deter-
mined by measuring X-ray diffractogram peak heights on bulk
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aeolian sands or fluvial sands. We note that these data give relative
abundances of the major minerals, as given on ternary diagrams,
but are not weight-percentages. Major element concentrations
were determined by wavelength-dispersive X-ray fluorescence and
values given are weight-percentages.

4. Results

4.1. Mineralogy and geochemistry of sands in the SinaieNegev erg

Consistent with previous studies (Sneh and Weissbrod, 1983;
Roskin et al., 2011b), our analyses indicate that dunes of the
SinaieNegev erg are characterized by a relatively simple miner-
alogy. The main minerals found in all dunes are, in decreasing
order of abundance, quartz, plagioclase and K-feldspar. Ternary
diagrams based on relative abundances as measured by XRD peak
heights display the quartz dominance in both the Negev and Sinai
dunes (Fig. 9). Major element geochemistry supports these

interpretations. Negev dunes have SiO2 contents ranging from
w80 to 95%, whereas Na2O (reflecting plagioclase) contents range
from 0.24 to 0.83% and K2O contents (reflecting K-feldspar) range
from 0.50 to 0.93%. Sinai dunes show a similar composition, with
SiO2 contents ranging from w76 to 98%, Na2O contents ranging
from 0.09 to 0.79% and K2O contents ranging from 0.14 to 0.91%.
Collectively, the XRD and geochemical data indicate that Negev
and Sinai dunes sands do not differ significantly in composition.

Quartz-rich (compared to feldspar) sand dunes are not expected
to have significant amounts of calcite, because calcite is usually
abraded to finer grain sizes at least as rapidly as feldspar (Kuenen,
1960). Thus, we were surprised to find measurable amounts of
calcite in both the Negev and Sinai dunes. Not all dunes contain
calcite, and the abundances of this mineral vary considerably, when
compared to quartz and total feldspar (K-feldspar þ plagioclase) on
ternary diagrams (Fig. 10). Major element compositions, plotted as
SiO2/10eAl2O3 þ Na2O þ K2OeCaO to mimic the quartzefeldspare
calcite XRD diagrams, support this interpretation (Fig. 11). At least
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some of the variability in calcite content appears to be related to
age and geography. Stratigraphic relations and the OSL geochro-
nology of Roskin et al. (2011b) allow a comparison of the compo-
sitions of late Pleistocene and late Holocene dunes, at least in the
Negev portion of the erg. On quartzeK-feldspareplagioclase
ternary diagrams, there is no significant difference between the
two age groups of aeolian sands (Fig. 12). On quartzefeldspare
calcite diagrams, however, there are several late Pleistocene sand
samples that have significantly higher amounts of calcite than the
late Holocene sands. As mentioned earlier, Roskin et al. (2011b)
identified three eastewest trending dune-incursion corridors in
the Negev portion of the dunefield (Fig. 3). All of the higher calcite
Pleistocene sands from the Negev are from either the southern
incursion corridor, or the southern portion of the central incursion
corridor. Deposition of relatively carbonate-rich aeolian sand ap-
pears to have occurred fairly consistently in the late Quaternary in
the southern corridor of the Negev dunes. At the Mitvakh locality,
situated in the southern corridor, calcite is detectable in the entire
section (Fig. 6). Using CaO þ LOI as a proxy for total carbonate
content, calcite abundances range from 6 to 10% throughout the
section at Mitvakh, from the late Pleistocene (marked by an OSL age
of w14 ka at a depth of w9 m) up to the late Holocene (marked by
Byzantine artifacts 1.7e1.4 ka, at the top of the section).

The mineralogy of potential source sediments, sands of the Nile
Delta and sands of the Wadi El Arish drainage system of Sinai, are

distinct from one another. Nile Delta sands consist mostly of quartz,
followed by plagioclase and K-feldspar (Fig. 9). Calcite is present in
only a few Nile samples and in very small amounts (Fig. 10). Major
element geochemistry is consistent with this mineralogy (Fig. 11),
with Nile Delta sands showing SiO2 contents of 85e95%, Na2O con-
tents of 0.45e1.2%, andK2O contents of 0.42e1.1%. In contrast, almost
all Sinai wadi sands have calcite (Fig. 10). Based on CaO þ LOI as an
estimate of mineral abundance, carbonate contents vary widely,
however, fromw14 to w91%. In Sinai wadi sands, SiO2 contents are
inversely related to carbonate content and vary from w6 to w82%,
with Na2O ranging from 0.05 to 0.35%, and K2O ranging from 0.11 to
0.58%. Thus, although theWadi El Arish drainage system is certainly
dominated by carbonate rocks (Sneh, 1982; Bartov, 1990), silicate
minerals are also present within the alluvium derived from these
rocks, sometimes in substantial amounts.

Nile Delta sands and Sinai wadi sands can also be distinguished
from one another by the use of geochemical indicators of heavy
mineral assemblages. There is a long tradition of using heavy
mineral suites to determine sediment origins. Some of these min-
erals are resistant to mechanical breakdown and can be distinctive
for different source rocks (Blatt et al., 1972; Pettijohn et al., 1972).
An alternative approach is possible based on studies that have
shown that, in the absence of clay minerals or intergranular
cement, heavy mineral assemblages are proxied by geochemical
indicators, specifically Fe2O3, MgO and TiO2 contents (e.g., Nesbitt

Fig. 9. Ternary diagrams showing relative abundance of quartz, K-feldspar, and plagioclase, based on XRD peak heights (20.8� for quartz; 27.4� for K-feldspar, and 27.8� for
plagioclase) for (a) Negev dunes, (b) Sinai dunes, (c) aeolianite at Gaash, and (d) Sinai wadi sands and Nile Delta sands.
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and Young, 1996; Kasper-Zubillaga et al., 1999). As discussed above,
our XRD analyses and major element geochemistry indicate that
the dominant constituents are all light minerals (quartz, K-feldspar,
plagioclase, and calcite), none of which contain significant amounts
of Fe2O3, MgO, or TiO2. A very small amount of the total Fe may be
present as Fe-oxide coatings on quartz and feldspar grains (Roskin
et al., 2012), but this does not explain the bulk of the Fe content.
Thus, Fe2O3, MgO, and TiO2 contents most likely reflect the suite of
heavy minerals present as accessory constituents in these dunes.
We can compare the relative abundance of Fe2O3, MgO, and TiO2 in
dunes and potential source sediments as a proxy for heavy mineral
assemblages. Ternary diagrams of Fe2O3eMgOeTiO2 show that Nile
Delta sands and Sinai wadi sands have distinctive compositions,
with no overlap (Fig. 13). Negev dunes fall mostly within or close to
the field defined by Nile Delta sands. Sinai dunes also fall mostly
within or somewhat above the field for Nile Delta sands, although
three samples fall within the range of Sinai wadi sands.

4.2. Mineralogical maturity in dunes of the SinaieNegev erg

The relative abundance of quartz, K-feldspar, and plagioclase in
Negev dunes, when compared to other dunefields, shows that the
Negev sands are relatively mature mineralogically. Mineralogical
maturity, as the term is used here, is defined as a compositional

state of a clastic sedimentary body wherein there is a dominance of
quartz and an absence orminority of less-resistant minerals such as
feldspars, carbonates, gypsum, or lithic fragments. Sandstones that
meet this definition are classified as quartz arenites (formerly
called orthoquartzites), if they are at least 95% quartz (Pettijohn
et al., 1972). Thus, aeolian sediments in many of the world’s great
sand seas may be properly classified as quartz arenites, a state of
maturity that Pettijohn et al. (1972, p. 216) describe as “.the most
texturally and compositionally mature of all sands. Some approach
the theoretical end point in sand evolution.” Dott (2003) elegantly
described quartz arenites as “.nature’s finest distillatee almost as
remarkable as a pure single malt Scotch whiskey.”

Mineralogical maturity, whether expressed mineralogically or
geochemically, can be a powerful tool in ascertaining sediment
sources. A sediment bodycannot be lessmineralogicallymature than
its source sediments. If a dunefield has more weatherable minerals
(feldspars, calcite, dolomite, gypsum) than its inferred source, then it
must have a second source that is supplying these constituents. Ex-
amination of quartzeK-feldspareplagioclase ternary diagrams of
Negev and Sinai dunes shows close similarity to the composition of
bothNile Delta sands and Sinai wadi sands (Fig. 9). Thus, with regard
to these three minerals, dunes of the SinaieNegev erg could be
interpreted to have been derived from either of these sediment
sources or some combination of them. Nevertheless, comparison of

Fig. 10. Ternary diagrams showing relative abundance of quartz, all feldspar (K-feldspar þ plagioclase) and calcite, based on XRD peak heights (20.8� for quartz; 27.4� for K-feldspar,
27.8� for plagioclase, and 29.4� for calcite) for (a) Negev dunes, (b) Sinai dunes, (c) aeolianite at Gaash, and (d) Sinai wadi sands and Nile Delta sands.
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Negev and Sinai sands with these sources on quartzetotal feldspare
calcite diagrams (and their geochemical proxies) shows that the
presence of calcite in the dunes cannot be explained solely by deri-
vation from aNile Delta source (Figs.10 and 11). Fewof theNile Delta
sands we studied contain calcite and those that do contain it have
very low abundances, as reflected in low CaO content and LOI. Thus,
calcite in dunes of the SinaieNegev erg is likely derived from Sinai
and Negev wadi sands.

In addition to simple ternary diagrams of quartz, feldspar and
calcite abundance, mineralogical maturity can be portrayed
geochemically. One approach is to plot total SiO2 content (as a
proxy for quartz) against total Al2O3 þ K2O þ Na2O content (as a
proxy for total feldspar). Suttner and Dutta (1986) used this
approach in paleoclimatic interpretations of ancient sandstones
andMuhs (2004) used it in assessing long-term degree of activity of
Quaternary dune sands. Another approach, presented by Pettijohn
et al. (1972), is to plot the logarithm of Na2O/K2O (a measure of
plagioclase to K-feldspar) against the logarithm of SiO2/Al2O3 (a
measure of quartz to total feldspar). In this method, sandstones that
are more mature have lower Log [Na2O/K2O] due to plagioclase
depletion and higher Log [SiO2/Al2O3] due to overall feldspar
depletion. An advantage of the Pettijohn method is that it provides
dimensionless comparisons of feldspar versus quartz content,
regardless of carbonate content.

On a Pettijohn geochemical maturity diagram, the hypothesized
source sediments for the SinaieNegev erg span the range of values
for subarkoses and sublithic arenites (Fig. 14). Nile Delta sands and
Sinai wadi sands show about the same ranges for Log [SiO2/Al2O3],
but Sinai wadi sands show a greater depletion of plagioclase rela-
tive to K-feldspar, based on lower Log [Na2O/K2O] values. Negev
dune sands fall mostly between these two sediment groups, but
Sinai dune sands show less depletion of plagioclase and about half
fall within the range of Nile Delta sands. Thus, the Pettijohn dia-
grams permit an interpretation of Sinai dunes being derived from
the Nile Delta, because the dune sands show about the same degree
of maturity as the delta sands, or slightly more maturity in the case
of a few samples. However, local Sinai wadi sands are eliminated as
a likely source for at least the silicate fraction of Sinai dune sands,
because the dunes have more plagioclase relative to K-feldspar (i.e.,
higher Log [Na2O/K2O] values) than do thewadi sands. On the other
hand, two interpretations are possible with the Negev dunes.
Because the Negev dunes display a range of values that is mostly
between the two possible source sediments, this can mean either
derivation from both sources or a solely Nile Delta source followed
by depletion of plagioclase from abrasion during transport.

The hypothesis of abrasion during transport for the Negev dunes
can be explored by comparison with another aeolian sediment
body that is also postulated to have a Nile Delta source, the coastal

Fig. 11. Ternary diagrams showing relative amounts of SiO2/10 (representing quartz), Al2O3 þ Na2O þ K2O (representing all feldspar), and CaO (representing calcite) for (a) Negev
dunes, (b) Sinai dunes, (c) aeolianite at Gaash, and (d) Sinai wadi sands and Nile Delta sands. Compare to Fig. 10.
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aeolianites or kurkar deposits of the Israeli coastal plain. Emery and
Neev (1960) and Stanley (1989) report heavy mineral assemblages
that point to a Nile source of sand for Israeli beaches. These ob-
servations are consistent with models of sediment transport
northward by longshore currents from Sinai to the northern coast
of Israel, as outlined by Goldsmith and Golik (1980) and Zviely et al.
(2007). Although the carbonate fraction of Israeli aeolianites is
believed to be derived from local bioclastic sources, longshore
transport of Nile Delta sand eastward along the Mediterranean has
long been used to explain the origin of the non-carbonate fraction
of aeolianite dune sands (Emery and Neev, 1960; Yaalon, 1967;
Horowitz, 1979; Frechen et al., 2001). We note, however, that a few
of the aeolianite samples may have some influence from Sinai wadi
sands, based on heavy mineral assemblages, proxied by Fe2O3e

MgOeTiO2 (see Fig. 13(c)). In any case, unlike sands of the Sinaie
Negev erg, the aeolianite/kurkar sands of the Israeli coastal plain
probably underwent only short distances of aeolian transport
from the coast before they were cemented into rock (cf. Tsoar,
2000). IRSL ages presented by Porat et al. (2004) show that

aeolianite cementation can take place very rapidly in Israel. Thus,
we infer that if Nile-Delta-derived quartz and feldspars in Israeli
aeolianites underwent only short distances of aeolian travel before
cementation, they should have experienced little depletion of
feldspar by abrasion during transport. This hypothesis can be tested
by examination of a Pettijohn plot for the aeolianites we collected at
Gaash, Israel (Fig. 8). Results indicate that the Gaash aeolianite
compositions fall squarely within the range for Nile Delta sands,
thus suggesting little or no abrasional loss of feldspar by long-
distance aeolian transport (Fig. 15).

5. Discussion

5.1. Origin of sand in the SinaieNegev erg

Collectively, the mineralogical and geochemical data presented
here support the long-assumed hypothesis that sands of the Nile
Delta are the primary source of sediments in the SinaieNegev erg.
Nile Delta sands are rich in quartz, with small amounts of K-

Fig. 12. Comparison of quartzeK-feldspareplagioclase and quartzeall feldsparecalcite compositions for Holocene [(a) and (c)] and Pleistocene [(b) and (d)] aeolian sands in the
Negev Desert. Shown for comparison are the ranges of these minerals for Sinai wadi sands and Nile Delta sands.
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feldspar and plagioclase, in proportions similar to what is found in
sands of the SinaieNegev erg. Pettijohn-style geochemical plots of
mineralogical maturity that measure feldspar depletion relative to
quartz show that Sinai dune sands have compositions (with respect
to quartz and feldspars) very similar to Nile Delta sands. A number
of samples of Negev dune sands and a few Sinai dune sands show
somewhat greater mineralogical maturity than Nile Delta sands.
This does not rule out a Nile Delta source, however, as some feld-
spar loss is expected during aeolian sand transport. Importantly,
neither Sinai nor Negev dune sands show a lower degree of
mineralogical maturity than Nile Delta sands. If this were the case,
then a more feldspar-rich source would have to be invoked at least
as a partial source.

Geochemical indicators that proxy for heavy minerals also
support a Nile Delta source for the SinaieNegev erg. Mineralogical
compositions, as determined by XRD, show that Fe2O3, MgO and
TiO2 likely reside in the trace quantities of heavy minerals in both
Nile Delta and Sinai wadi sands, the two candidate source sedi-
ments. Thus, Fe2O3eMgOeTiO2 ternary plots provide a means of
assessing the heavy mineral composition of the source sediments.
Fields defined by the composition of Nile Delta and Sinai wadi
sands on these plots do not overlap. Both Sinai and Negev dune
sands fall mainly within the field defined by Nile Delta sands,
consistent with the mineralogical and geochemical data for the
light mineral fraction.

Although the bulk of mineralogical and geochemical data
support a Nile Delta source for the SinaieNegev erg, other
mineralogical data show that a second source is required. Most

Sinai dunes and many Negev dunes (dominantly in the southern
dune incursion corridor) contain measurable amounts of calcite.
Based on CaO contents and LOI, the amount of calcite in Sinai
dunes ranges from 1 to 19%, with Negev dunes having calcite
contents of 1e11%. Calcite is present in small amounts in only a
few Nile Delta sands we examined; most delta samples contain no
measurable calcite at all. In contrast, fluvial sands from the upper
part of the Wadi El Arish drainage basin of Sinai have abundant
calcite. This calcite is likely derived from Jurassic, Cretaceous, and
Eocene carbonate rocks that constitute the dominant bedrock in
central and northern Sinai (Bartov, 1990). Based on both XRD and
geochemistry, carbonate contents of these Sinai wadi sands range
from 14 to 90% and average w64%. Thus, a smaller but significant
amount of sediment in the SinaieNegev erg is not derived from
the Nile Delta, but fromwadi sands of Sinai. Analyses of samples in
a thick aeolian sand section at Mitvakh, in the southern dune
incursion corridor of the Negev Desert, show that inputs of calcite
from Sinai or Negev wadis have been important through the whole
period of sedimentation recorded at this locality, which dates from
the late Pleistocene to the late Holocene. Furthermore, other lo-
calities in the Negev dunes that show significant amounts of
calcite are, like the Mitvakh section, all located within the south-
ern dune-incursion corridor. Thus, aeolian inputs of calcite from
calcareous Sinai wadi sands appear to be directed mainly toward
the southern part of the Negev dunes in Israel. Another possibility
is that Nahal Nizzana, a local source for dunes of the southern
incursion corridor, provided sediment inputs, as sands in this
drainage are carbonate-rich.

Fig. 13. Ternary diagrams showing relative amounts of Fe2O3, MgO, and TiO2, representing heavy minerals for (a) Negev dunes; (b) Negev dunes, showing an enlarged portion of (a);
(c) Sinai dunes; and (d) aeolianite at Gaash. Shown for comparison are ranges of these values in Sinai wadi sands (stipple pattern) and Nile Delta sands (gray shading).
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5.2. Paleoenvironmental conditions favorable to the formation of
the SinaieNegev erg

The Nile Delta is currently cultivated and has been utilized for
this purpose for millennia. Part of the reason that agriculture is
possible on the delta is that it hosts fine-grained soils that are
productive if there is sufficient moisture. A question that follows
from this is how Nile Delta sands could be entrained to form dunes
when the present sediment cover is so fine grained. We infer that
the answer lies in the changing conditions of the Nile Delta over the
Last Glacial period and into the Holocene. Stratigraphic studies by
Stanley et al. (1996; see also Fig. 7 herein) and reconstruction of the
late Pleistocene-to-historic-period paleogeography of the region by
Stanley andWarne (1993) show that during the Last Glacial period,
w35 ka to w13 ka (in calibrated radiocarbon years), the Nile Delta
was characterized by a series of broad, braided or anastomosing
channels that were seasonally dry. The dominant sediments in the

delta at this time were quartz-rich sands, as shown by the stra-
tigraphy in Stanley et al. (1996) and Fig. 7. Sea level was as much as
w130 m below present, and the shoreline lay farther north (Fig. 1),
based on the Barbados sea-level record (Peltier and Fairbanks,
2006). Fine-grained floodplain sediments likely were found only
near what is now the shoreline, in limited areas compared to the
present size of the delta (Fig. 16). Seasonally dry, braided or anas-
tomosing channels were separated by dry, sandy plains over most
of what is now the main part of the Nile Delta. We suggest that this
broad, dry, sandy plain, which would have been extensive, set the
stage for the growth of the SinaieNegev erg.

Concurrent with a readily available source of sand, there was
probably an increase in the frequency of high-velocity winds during
the Last Glacial period. Wind strength is one of the major controls
on dune activity (Tsoar, 2005). Under reasoned scenarios of Last
Glacial synoptic climatology, it is likely that there were higher ve-
locity, and more frequent, west-to-east winds over the area now
occupied by the SinaieNegev erg, due to more frequent eastern
Mediterranean cyclonic systems (see discussion in Enzel et al.,
2008). With an abundant sand supply from the Nile Delta, high-
velocity winds would have brought about optimal conditions for
initiation and growth of the SinaieNegev erg during the Last Glacial
period, a favorable combination of conditions also outlined by
Roskin et al. (2012).

Fig. 14. Geochemical plots of mineralogical maturity using method of Pettijohn et al.
(1972) for the Negev dunes (upper) and Sinai dunes (lower) compared to Nile Delta
sands and Sinai wadi sands. All data from this study.

Fig. 15. Upper: Geochemical plots of mineralogical maturity using method of Pettijohn
et al. (1972) for the Gaash aeolianites of Israel (this study) and Negev dunes compared
to Nile Delta sands. Lower: Geochemical plots of mineralogical maturity using method
of Pettijohn et al. (1972) for the Negev dunes (upper) and compared to Nile Delta sands
and Sinai wadi sands. Shown for comparison are compositions for Nubian-type
sandstones, collected in Makhtesh Ramon, Israel and Cenozoic basalts from the Ethi-
opian Highlands. All data from this study except basalt data, which are from Pik et al.
(1998).
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With the insolation-forced transition to the Lateglacial period
and early Holocene, global ice volume decreased, sea level rose
(Fig. 17), and base level for the Nile rose, followed by a decrease in
stream power. Sea-level rise initiated Nile aggradation and a shift to
a dominantly suspended, fine-grained load. Furthermore, higher
insolation in the Northern Hemisphere at this time is thought to
have brought about a northward migration of the ITCZ, a period
from w15 ka to w5 ka (cal yr BP) that has been referred to as the
African Humid Period (DeMenocal et al., 2000; Bernhardt et al.,
2012; Williams, 2012). A shift to a major period of aggradation
with rising sea level, coupled with increased moisture during the
African Humid Period, brought about a drastic change in the
morphology and dominant sediments on the Nile Delta (Figs. 16
and 17). By the Last Glacial-to-Holocene transition, the overall
size of the sandy plains would have diminished and fewer anas-
tomosing channels would have existed. By the mid-Holocene, the
dry, sandy plains between the former anastomosing channels were
covered with floodplains, wetlands and marshes, and brackish-
water lagoons were present on the outer part of the delta
(Stanley and Warne, 1993).

The increase of fine-grained particles as the dominant sediment
carried by the Nile during the African Humid Period is recorded in

sediments of the eastern Mediterranean, off the coast of Israel,
studied by Hamann et al. (2008, 2009). During the Last Glacial
period, the main fine-grained sediment input to the eastern Med-
iterranean Seawas dust from the Sahara, based on both particle size
and clay mineralogical data. Saharan dust that reaches the eastern
Mediterranean Sea is rich in illite and contains much less smectite,
a trend that has been observed for glacial periods over much of the
Quaternary (Zhao et al., 2012). A core (SL 112) off Israel studied by
Hamann et al. (2008, 2009) shows abundant illite during the LGM
and particle size modes of w40 mm, interpreted to be dominantly
aeolian.With the advent of the African Humid Period atw15 ka, the
most important sediment input to the eastern Mediterranean Sea
became the Nile, with greatly reduced aeolian inputs. This is re-
flected in the finer grain size (interpreted to be fluvial) and abun-
dance of smectite, which is found in the Nile drainage basin
(Fig. 17). The scenario is consistent with the evidence for the shift to
fine-grained (silts and clays) sedimentation on the Nile Delta, seen
in the core stratigraphy of Stanley et al. (1996) and shown in Fig. 7.

The significance of the sequence of events outlined above for the
SinaieNegev erg is that changes in the fluvial regime of the Nile,
controlled both by sea level and climate, dictated when sand sup-
plies would have been available from the delta for building dunes.
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Fig. 16. Paleogeography of the Nile Delta region at the mid-Holocene (a), Last Glacial-to-Holocene transition (b), and Last Glacial period (c). Redrawn in simplified form from Stanley
and Warne (1993).
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During the Last Glacial period, when broad, dry, sandy plains with
seasonally dry channels typified what is now the Nile Delta region
(Fig. 16c), sand supplies were abundant and initial dune incursions
to the SinaieNegev erg began (Fig. 17). Dune building continued
into the Lateglacial, but diminished sometime after sea level began
to rise in the Holocene and the African Humid Period began. A
decrease in dune building activity in the SinaieNegev erg at this
time is consistent with a diminution in sand supplies, caused by
aggradation of the Nile and a shift to finer grained sedimentation
onwhat is now the Nile Delta. Williams (2012) points out that finer
grained sedimentation (as opposed to sand and gravel deposition)
also occurred in the upper reaches of the Nile at this time. Little or
no dune building occurred during the early-to-mid-Holocene
because of a lack of sand supply, but dune building began again in
the late Holocene, after the African Humid Period had ended
(Fig. 17). Similar compositions of Holocene and Pleistocene dunes,
except for calcite (Fig. 12), permit the possibility that some of the
Holocene aeolian sand could have been reworked from Pleistocene
dunes. A recent study shows that much or all of this late Holocene
dune activity is due to anthropogenic causes, namely destruction of
biological soil crusts (from grazing) or removal of vascular vege-
tation (from grazing or fuel collection) as well as possible brief
periods of increased wind strength (Roskin et al., in press).

5.3. Origin of quartz in the Nile Delta

Earlier, we pointed out that recently computed sediment bud-
gets, based on both petrography and isotopic compositions, indi-
cate that the largest contributors to the Nile are tributaries, such as
the Blue Nile and Wadi Atbara, that drain the Ethiopian Highlands.
The Ethiopian Highlands are dominated by basalts of Cenozoic age,

rocks that lack quartz. Nevertheless, our studies show that Nile
Delta sands, at least those of Late-Last-Glacial age (Fig. 7) are very
rich in quartz and in fact qualify as subarkoses or sublithic arenites
(Fig. 14). This leads to the question of what the source of quartz was
for the Nile Delta during the Last Glacial period. One possibility that
must be considered is simple aeolian transport of sand from the
Western Desert of Egypt (Fig. 1), where the Great Sand Sea, a large
dunefield, is situated (Fig.18). El-Baz et al. (1979) analyzed a limited
number of samples from this sand sea, but their data indicate that
the dunes are indeed quartz-rich (>90%). Bubenzer et al. (2007)
show that dunes in this sand sea were active during the Last
Glacial period and, at least in the northern part of region, paleo-
winds could have been from the west. Nevertheless, the extent of
this sand sea does not reach the Nile drainage basin (Fig. 18).
Although it is possible that small amounts of quartz sand could
have reached the Nile from this source, it is unlikely that such tiny
additions can explain the dominance of quartz in Nile Delta sedi-
ments that date to the Last Glacial period.

Farther south in the Sudan, however, there is abundant aeolian
sand that could have been delivered by wind transport to the Nile
drainage basin. We note that much of this aeolian sand overlies
what has been mapped as Cretaceous “Nubian Sandstone,” a quartz
arenite. Given the similar spatial distribution of both aeolian sand
and Nubian Sandstone in northern Sudan (Fig. 18), we suspect that
this Cretaceous bedrock is the likely source of the dunes and sand
sheets in this region. This hypothesis requires testing, but it leads to
the possibility that quartz in the Nile system, whether delivered by
fluvial or aeolian processes, ultimately could be derived from the
Nubian Sandstone. Indeed, Williams (2012) notes that during the
Pleistocene, dunes migrated across a dry White Nile river bed.
Butzer and Gladfelter (1968) studied Pleistocene fluvial sediments

Fig. 17. (A) July insolation at the top of the atmosphere at 15�N (data from Berger and Loutre, 1991); (B) sea level history from the Last Glacial period to present, based on data from
Barbados, the Florida Keys and the Bahamas (compiled by the authors from Bard et al., 1990; Toscano and Lundberg, 1998; Toscano and Macintyre, 2003; Peltier and Fairbanks,
2006); (C) particle size data, expressed as fractions of 1 for fluvial (EM3) sediment and (D) clay mineralogy in eastern Mediterranean Sea core SL 112 and inferred dominant
sediment sources (data from Hamann et al. (2008, 2009)); and (E) periods of dune activity in the Negev Desert of Israel, based on OSL ages (Roskin et al., 2011b).
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of the Nile along numerous reaches in the Sahara, including seg-
ments that are now flooded because of the construction of the
Aswan High Dam. They document very high quartz contents in Nile
sands and infer that Nubian Sandstone is the source of this mineral.
Although the present sediment budget of the Nile seems to be
dominated by basalt-derived inputs from the Ethiopian Highlands
(Padoan et al., 2011; Williams, 2012), Garzanti et al. (2006) point
out that this is partly a function of high sediment yields from
anthropogenic erosion due to deforestation and land use in the
upper part of the drainage basin. Indeed, Garzanti et al. (2006)
caution that their sediment budget probably cannot be extrapo-
lated very far into the past. Furthermore, it is clear from detailed
geomorphic and stratigraphic studies by Butzer and Hansen (1968)
that Nubian Sandstone was an important contributor to fluvial
sands in downstream reaches of the Nile during Pleistocene time.
We did not have access to samples of the Nubian Sandstone in
Egypt, but the correlative rocks of the Kurnub Group (Cretaceous)
we collected from Makhtesh Ramon confirm that they are very
mature mineralogically, consistent with studies done on the
Nubian Sandstone itself in Egypt (El-Hinnawi et al., 1973). Exami-
nation of a Pettijohn geochemical plot of mineralogical maturity

shows that the composition of Pleistocene Nile Delta sands can be
explained by a mix of feldspar-rich basalts from the Ethiopian
Highlands and quartz-rich sources derived from the Nubian Sand-
stone (Fig. 15).

5.4. Implications for the origin of loess from aeolian sand in the
SinaieNegev erg

As alluded to earlier, a number of recent studies (Crouvi et al.,
2008, 2010, 2012; Enzel et al., 2008, 2010; Amit et al., 2011) have
concluded that dunefields, and the SinaieNegev erg in particular,
are important generators of silt-sized quartz that constitute a major
part of “desert” (i.e., non-glaciogenic) loess. The main mechanism
envisioned in this process is reduction of sand-sized quartz to silt-
sized quartz by abrasion during aeolian transport. The mechanism
has intuitive appeal, based on the geography of the SinaieNegev
erg located upwind of the main loess body in Israel (Fig. 1). In
addition, experimental work by Kuenen (1960), Dutta et al. (1993),
Wright et al. (1998) and Wright (2001a, 2001b) have shown that
both aeolian abrasion and ballistic impacts are surprisingly effec-
tive processes for reduction of sand-sized quartz, feldspars, and
calcite to smaller sizes, including particle sizes that fall within the
range of loess sediments.

Nevertheless, a geographic association of a dunefield and a loess
body need not be due to a genetic relationship. In China, for
example, the Loess Plateau is downwind of several desert basins
with dunefields, but Sun (2002) concludes that the silt is produced
by glacial and periglacial processes in the mountains surrounding
the basins and that the dunefields occupying the desert basins are
temporary storage areas for silt-sized sediment, not the location of
silt particle genesis. In the Great Plains region of North America,
loess in Nebraska is immediately downwind of the Nebraska Sand
Hills, the largest dunefield on the continent. Mineralogic,
geochemical, and isotopic studies by Aleinikoff et al. (2008) and
Muhs et al. (2008) show, however, that while an active Nebraska
Sand Hills dunefield probably played an important role in trans-
porting silt to the loess bodies downwind, sand-sized particles in
the dunefield itself apparently did not generate a significant
amount of loess by abrasion of dune sand.

The data we present here can be used to provide a partial test of
the importance of the SinaieNegev erg to the origin of loess in
Israel. The classical aeolian experimental studies conducted by
Kuenen (1960) documented aeolian abrasional loss, using various
particle sizes, surfaces of transport, wind velocities, and mineral
species. Under similar conditions (particle size, transport surfaces,
wind velocity), the greatest amount of mass loss per unit of
transport distance was from calcite and feldspar, not quartz.
Although it is important to keep in mind that experimental results
such as these may not always be applicable to field settings,
Kuenen’s (1960) results are consistent with the greater hardness of
quartz (7) compared to feldspar (6) or calcite (3). Thus, if the Sinaie
Negev erg is contributing coarse-silt-sized quartz particles to the
loess of Israel, the erg should also be generating a relatively greater
amount of silt-sized calcite and feldspar. This hypothesis requires,
therefore, that calcite and feldspars should be enriched in loess
(relative to quartz) when compared to sands in the SinaieNegev
erg. Crouvi et al. (2009) and Enzel et al. (2010) reported percent-
ages of quartz, K-feldspar, plagioclase, and calcite in loess down-
wind of the SinaieNegev erg. They calculated percentages of these
mineral species using a method by Dr. Amir Sandler of the
Geological Survey of Israel (written communication, 9 August
2012), wherein the following factors are applied to XRD peak
heights at two-theta, summed, and calculated as percentages:
quartz, 26.6�, �1.0; K-feldspar, 27.4�, �3.0; plagioclase, 27.8�, �3.5;
and calcite, 29.4�, �1.1. We followed this protocol with our XRD
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data in order to make direct comparisons with the loess mineral-
ogical compositions reported by Crouvi et al. (2009) and Enzel et al.
(2010). Mineral percentages calculated in this manner are consis-
tent with major element chemistry. Comparison with the Israeli
loess mineralogy indicates that, for the most part, loess at Har
Keren (Enzel et al., 2010) and elsewhere in Israel (Crouvi et al.,
2009) is enriched in K-feldspar, plagioclase, and calcite, relative to
quartz, when compared to these minerals in the Negev dunes
(Fig. 19). Thus, our feldspar and calcite results support the hy-
pothesis of Crouvi et al. (2008, 2010, 2012), Enzel et al. (2008, 2010),
and Amit et al. (2011) that the SinaieNegev erg could be at least a
partial source for loess in Israel. It is important to point out, how-
ever, that loess in Israel, at least in places, contains significant
amounts of very fine-grained particles that are unlikely to be pro-
duced by abrasion in the SinaieNegev erg. For example, in the
Ruhama badlands area, in the northern part of the loess area shown
in Fig. 1, Wieder et al. (2008) studied a 15-m-thick sequence of loess
and loess-derived paleosols. Clay (<2 mm) contents in the loess
and/or the loess-derived buried soils range from w25% to w55%,
which are significant amounts of the loess particle-size population.
It is likely that these fine-grained particles owe their origins to
long-range-transported dust from Sinai or the Sahara (Dan and
Yaalon, 1971), rather than genesis by abrasion of sand-sized parti-
cles in the SinaieNegev erg.

6. Conclusions

Based on our studies of the SinaieNegev erg sands and potential
source sediments, we reach the following conclusions:

(1) Mineralogical and geochemical data indicate that the primary
source of sand in the SinaieNegev erg is the Nile Delta. Aeolian
sand of the SinaieNegev erg has long been inferred to be

derived from this source, but previous studies have been
largely hypothetical. Our examination of dated cores from the
delta shows that there are thick deposits of well-sorted sand,
dating to the Last Glacial period, that are quartz rich, as are the
dunes in the SinaieNegev erg. A minor source is sand from the
large Wadi El Arish drainage system in central and northern
Sinai. This drainage basin is situated in carbonate-rock terrain
and likely contributes calcite particles that are found in some
Sinai dunes and dunes in the southern incursion corridor of the
Negev.

(2) Sea level exerts a major influence on dune supplies in the
SinaieNegev erg through its role as a control on base level for
the Nile. Stratigraphic studies show that during the Last Glacial
period, when dune incursions in the SinaieNegev erg began,
what is now the Nile Delta area was characterized by a broad,
sandy, minimally vegetated plain with seasonally dry, braided
or anastomosing channels. Such conditions were ideal for
providing a ready source of sand for aeolian transport under
what were probably much stronger glacial-age winds. With the
post-glacial rise in sea level, the Nile began to aggrade and
sedimentation was dominated by fine-grained silts and clays,
as documented in the stratigraphic record of the delta and in
Mediterranean cores. Thus, sea level emerges as a major in-
fluence on the timing of dune activity in the SinaieNegev erg,
through its control on the supply of sand from the Nile Delta.

(3) Recent studies proposing that the SinaieNegev erg is a partial
source of loess in Israel are supported by our studies. The
proposed mechanism is abrasional reduction of aeolian sand,
primarily quartz, to silt sizes, with transport downwind from
the SinaieNegev erg. Under this scenario, minerals less resis-
tant to abrasion, feldspars and calcite, should be relatively
enriched in the downwind loess compared to the upwind
dunefield. Our mineralogical data for the SinaieNegev erg,

Fig. 19. Plots showing abundance of quartz versus K-feldspar, plagioclase, and calcite in the Negev dunes (this study) compared to loess at Har Keren (data from Enzel et al., 2010)
and elsewhere in the Negev Desert of Israel (data from Crouvi et al., 2009).
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when compared to Israeli loess, support this mechanism,
although clays in Israeli loess are likely derived from distant
sources by long-range transport.
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