15 research outputs found

    Activation of signal transducer and activator of transcription 5 (STAT5) is linked to beta 1-integrin protein abundance in unilaterally milked bovine mammary glands

    No full text
    © 2015 American Dairy Science Association. Prolactin (PRL) is important in the regulation of milk synthesis in mammary epithelial cells (MEC). In cattle, circulating levels of PRL are not limiting, suggesting the possible involvement of other factors that may control the response to PRL at the cellular level. The effects of milking frequency (MF) on milk synthesis are controlled locally within mammary glands and involve PRL signaling. To further investigate this relationship between MF and PRL signaling, udder halves of 17 dairy cows were milked either 4 times a day (4×) or once a day (1×) for 14 d in early lactation. Mammary biopsies were obtained 3 to 5. h following milking from both udder halves of 10 cows, and changes in PRL and associated pathways were measured. The abundance of STAT5A mRNA was higher after 4× milking, whereas that of the PRL receptor (. PRLR) and STAT3 were lower relative to that after 1× milking. In 4× mammary tissues, the protein levels of STAT5, activated STAT5, and β1-integrin were higher, whereas the those of the long isoform of PRL receptor and activated STAT3 were lower than 1× tissues. The activation of STAT5 correlated strongly with major milk protein mRNA abundance (r. =. 0.86 to 0.94) and β1-integrin protein levels (r. =. 0.91). These results confirm that major milk protein gene expression is associated with STAT5 activation and suggests that the STAT5 and β1-integrin signaling pathways are linked. Modulation of β1-integrin abundance in response to changes in MF may be a mechanism that controls the MEC ability to respond to PRL and therefore its secretory activity

    The effects of milking frequency in early lactation on milk yield, mammary cell turnover, and secretory activity in grazing dairy cows

    No full text
    In dairy cows, short-term changes of milking frequency in early lactation have been shown to produce an immediate and a long-term effect on milk yield in stall-fed cows. The effect is controlled locally within mammary glands and could be a function of either secretory mammary epithelial cell number or activity. To resolve this and determine its applicability in other feed management systems, a unilateral milking frequency experiment was conducted with udder halves of 17 multiparous, pasture-fed dairy cows milked either 4 times (4×) or once a day (1×) for 14 d from 5 ± 2 d in milk. Mean half-udder milk yield during the treatment period was higher from the 4× compared with 1× udder halves and continued to be higher until 200 d in milk once returned to twice a day milking. Mammary biopsies were obtained on d 14 of treatment from both udder halves of 10 cows. Proliferation of mammary cells was higher in 4× udder halves compared with 1×, whereas no difference in apoptosis levels was detected. Abundance of αS1-casein, β-casein, α-lactalbumin, and β-lactoglobulin mRNA was higher in tissue samples from 4× udder halves compared with 1×, whereas lactoferrin mRNA abundance was lower in 4× udder halves. In summary, change in milking frequency during early lactation affects proliferation of mammary cells as well as expression of the major milk protein genes, which both contribute to the observed changes in milk yield during and after unilateral milking frequency treatment

    The effects of milking frequency on insulin-like growth factor I signaling within the mammary gland of dairy cows

    No full text
    In dairy cows, short-term changes in milking frequency (MF) in early lactation have been shown to produce both an immediate and a long-term effect on milk yield. The effect of MF on milk yield is controlled locally within mammary glands and could be a function of changes in either number or activity of secretory mammary epithelial cells (MEC). Insulin-like growth factor I (IGF-I) signaling is one candidate factor that could mediate these effects, as it can be controlled locally within mammary glands. Both MEC number and activity can be affected by IGF-I signaling by activating the phosphoinositide 3-kinase (PI3K)/Akt and extracellular-signal-regulated kinase (ERK)1/2 pathways. To investigate the relationship between MF and IGF-I signaling, udder halves of 17 dairy cows were milked either 4 times a day (4×) or once a day (1×) for 14 d in early lactation. On d 14, between 3 and 5 h following milking, mammary biopsies were obtained from 10 cows from both udder halves, and changes in the expression of genes associated with IGF-I signaling and the activation of the PI3K/Akt and ERK1/2 pathways were measured. The mRNA abundance of IGF type I receptor, IGF binding protein (IGFBP)-3, and IGFBP-5 were lower following 4× milking relative to 1× milking. However, the mRNA abundance of IGF-I was not affected by MF. Both IGFBP3 and IGFBP5 are thought to inhibit IGF-I; therefore, decreases in their mRNA abundance may serve to stimulate the IGF-I signal in the 4×-milked mammary gland. The activation of PI3K/Akt pathway was lower in response to 4× milking relative to 1×, and the activation of the ERK1/2 was unaffected by MF, suggesting that they do not mediate the effects of MF
    corecore