568 research outputs found

    On the Origin of Stellar Masses

    Get PDF
    It has been a longstanding problem to determine, as far as possible, the characteristic masses of stars in terms of fundamental constants; the almost complete invariance of this mass as a function of the star-forming environment suggests that this should be possible. Here I provide such a calculation. The typical stellar mass is set by the characteristic fragment mass in a star-forming cloud, which depends on the cloud's density and temperature structure. Except in the very early universe, the latter is determined mainly by the radiation released as matter falls onto seed protostars. The energy yield from this process is ultimately set by the properties of deuterium burning in protostellar cores, which determines the stars' radii. I show that it is possible to combine these considerations to compute a characteristic stellar mass almost entirely in terms of fundamental constants, with an extremely weak residual dependence on the interstellar pressure and metallicity. This result not only explains the invariance of stellar masses, it resolves a second mystery: why fragmentation of a cold, low-density interstellar cloud, a process with no obvious dependence on the properties of nuclear reactions, happens to select a stellar mass scale such that stellar cores can ignite hydrogen. Finally, the weak residual dependence on the interstellar pressure and metallicity may explain recent observational hints of a smaller characteristic mass in the high pressure, high metallicity cores of giant elliptical galaxies.Comment: 7 pages, 5 figures, emulateapj format. Accepted to Ap

    An LSI chip set for DSP hardware implementation

    Get PDF
    金沢大学理工研究域 電子情報学

    New type of microengine using internal combustion of hydrogen and oxygen

    Get PDF
    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100x100x5 um^3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 us in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.Comment: Paper and Supplementary Information (to appear in Scientific Reports

    Production of Λ6^{6}_{\Lambda}H and Λ7^{7}_{\Lambda}H with the (Kstop^{-}_{stop},π+\pi^+) reaction

    Full text link
    The production of neutron rich Λ\Lambda-hypernuclei via the (KstopK^-_stop,π+\pi^+) reaction has been studied using data collected with the FINUDA spectrometer at the DAΦ\PhiNE ϕ\phi-factory (LNF). The analysis of the inclusive π+\pi^+ momentum spectra is presented and an upper limit for the production of Λ6^6_\LambdaH and Λ7^7_\LambdaH from 6^6Li and 7^7Li, is assessed for the first time.Comment: 11 pages, 3 figures. Accepted for publication in PL

    A study of the proton spectra following the capture of KK^- in 6^6Li and 12^{12}C with FINUDA

    Get PDF
    Momenta spectra of protons emitted following the capture of KK^- in 6^6Li and 12^{12}C have been measured with 1% resolution. The 12^{12}C spectrum is smooth whereas for 6^6Li a well defined peak appears at about 500 MeV/cc. The first observation of a structure in this region was identified as a strange tribaryon or, possibly, a Kˉ\bar K-nuclear state. The peak is correlated with a π\pi^- coming from Σ\Sigma^- decay in flight, selected by setting momenta larger than 275 MeV/cc. The Σ\Sigma^- could be produced, together with a 500 MeV/cc proton, by the capture of a KK^- in a deuteron-cluster substructure of the 6^6Li nucleus. The capture rate for such a reaction is (1.62\pm 0.23_{stat} ^{+0.71}_{-0.44}(sys))%/K^-_{stop}, in agreement with the existing observations on 4^4He targets and with the hypothesis that the 6^6Li nucleus can be interpreted as a (d+α)(d+\alpha) cluster.Comment: 21 pages, 10 figures. Accepted for publication in NP

    Probing the evolution of molecular cloud structure II: From chaos to confinement

    Get PDF
    We present an analysis of the large-scale molecular cloud structure and of the stability of clumpy structures in nearby molecular clouds. In our recent work, we identified a structural transition in molecular clouds by studying the probability distributions of gas column densities in them. In this paper, we further examine the nature of this transition. The transition takes place at the visual extinction of A_V^tail = 2-4 mag, or equivalently, at \Sigma^tail = 40-80 Ms pc^{-2}. The clumps identified above this limit have wide ranges of masses and sizes, but a remarkably constant mean volume density of n = 10^3 cm^{-3}. This is 5-10 times larger than the density of the medium surrounding the clumps. By examining the stability of the clumps, we show that they are gravitationally unbound entities, and that the external pressure from the parental molecular cloud is a significant source of confining pressure for them. Then, the structural transition at A_V^tail may be linked to a transition between this population and the surrounding medium. The star formation rates in the clouds correlate strongly with the total mass in the clumps, i.e, with the mass above A_V^tail, dropping abruptly below that threshold. These results imply that the formation of pressure confined clumps introduces a prerequisite for star formation. Furthermore, they give a physically motivated explanation for the recently reported relation between the star formation rates and the amount of dense material in molecular clouds. Likewise, they give rise to a natural threshold for star formation at A_V^tail.Comment: 11 pages, 12 figures, accepted for publication in Astronomy and Astrophysic

    Abnormal white matter blood-oxygen-level-dependent signals in chronic mild traumatic brain injury

    Get PDF
    Concussion, or mild traumatic brain injury (mTBI), can cause persistent behavioral symptoms and cognitive impairment, but it is unclear if this condition is associated with detectable structural or functional brain changes. At two sites, chronic mTBI human subjects with persistent post-concussive symptoms (three months to five years after injury) and age- and education-matched healthy human control subjects underwent extensive neuropsychological and visual tracking eye movement tests. At one site, patients and controls also performed the visual tracking tasks while blood-oxygen-level-dependent (BOLD) signals were measured with functional magnetic resonance imaging. Although neither neuropsychological nor visual tracking measures distinguished patients from controls at the level of individual subjects, abnormal BOLD signals were reliably detected in patients. The most consistent changes were localized in white matter regions: anterior internal capsule and superior longitudinal fasciculus. In contrast, BOLD signals were normal in cortical regions, such as the frontal eye field and intraparietal sulcus, that mediate oculomotor and attention functions necessary for visual tracking. The abnormal BOLD signals accurately differentiated chronic mTBI patients from healthy controls at the single-subject level, although they did not correlate with symptoms or neuropsychological performance. We conclude that subjects with persistent post-concussive symptoms can be identified years after their TBI using fMRI and an eye movement task despite showing normal structural MRI and DTI
    corecore