1,443 research outputs found
Near-Infrared-Spectroscopy with Extremely Large Telescopes: Integral-Field- versus Multi-Object-Instruments
Integral-field-spectroscopy and multi-object-spectroscopy provide the high
multiplex gain required for efficient use of the upcoming generation of
extremely large telescopes. We present instrument developments and designs for
both concepts, and how these designs can be applied to cryogenic near-infrared
instrumentation. Specifically, the fiber-based concept stands out the
possibility to expand it to any number of image points, and its modularity
predestines it to become the new concept for multi-field-spectroscopy. Which of
the three concepts --- integral-field-, multi-object-, or
multi-field-spectroscopy --- is best suited for the largest telescopes is
discussed considering the size of the objects and their density on the sky.Comment: 8 pages, 4 figures (converted to bitmap), to appear in the
proceedings of the Workshop on Extremely Large Telescopes, Sweden, June 1-2,
1999, uses spie.sty (V0.91) and spiebib.bst (V0.91
Surface differential rotation and prominences of the Lupus post T Tauri star RX J1508.6-4423
We present in this paper a spectroscopic monitoring of the Lupus post T Tauri star RX J1508.6-4423 carried out at two closely separated epochs (1998 May 06 and 10) with the UCL Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope. Applying least-squares convolution and maximum entropy image reconstruction techniques to our sets of spectra, we demonstrate that this star features on its surface a large cool polar cap with several appendages extending to lower latitudes, as well as one spot close to the equator. The images reconstructed at both epochs are in good overall agreement, except for a photospheric shear that we interpret in terms of latitudinal differential rotation. Given the spot distribution at the epoch of our observations, differential rotation could only be investigated between latitudes 15° and 60°. We find in particular that the observed differential rotation is compatible with a solar-like law (i.e., with rotation rate decreasing towards high latitudes proportionally to sin 2l, where l denotes the latitude) in this particular latitude range. Assuming that such a law can be extrapolated to all latitudes, we find that the equator of RX J1508.6-4423 does one more rotational cycle than the pole every 50 ±10 d, implying a photospheric shear 2 to 3 times stronger than that of the Sun. We also discover that the Hα emission profile of RX J1508.6-4423 is most of the time double-peaked and strongly modulated with the rotation period of the star. We interpret this rotationally modulated emission as being caused by a dense and complex prominence system, the circumstellar distribution of which is obtained through maximum entropy Doppler tomography. These maps show in particular that prominences form a complete and inhomogeneous ring around the star, precisely at the corotation radius. We use the total Hα and Hβ emission flux to estimate that the mass of the whole prominence system is about 10 20g. From our observation that the whole cloud system surrounding the star is regenerated in less than 4 d, we conclude that the braking time-scale of RX J1508.6-4423 is shorter than 1 Gyr, and that prominence expulsion is thus likely to contribute significantly to the rotational spindown of young low-mass stars
Spectral properties and geology of bright and dark material on dwarf planet Ceres
Variations and spatial distributions of bright and dark material on dwarf
planet Ceres play a key role in understanding the processes that have led to
its present surface composition. We define limits for bright and dark material
in order to distinguish them consistently, based on the reflectance of the
average surface using Dawn Framing Camera data. A systematic classification of
four types of bright material is presented based on their spectral properties,
composition, spatial distribution, and association with specific
geomorphological features. We found obvious correlations of reflectance with
spectral shape (slopes) and age; however, this is not unique throughout the
bright spots. Although impact features show generally more extreme reflectance
variations, several areas can only be understood in terms of inhomogeneous
distribution of composition as inferred from Dawn Visible and Infrared
Spectrometer data. Additional material with anomalous composition and spectral
properties are rare. The identification of the composition and origin of the
dark, particularly the darkest material, remains to be explored. The spectral
properties and the morphology of the dark sites suggest an endogenic origin,
but it is not clear whether they are more or less primitive surficial exposures
or excavated subsurface but localized material. The reflectance, spectral
properties, inferred composition, and geologic context collectively suggest
that the bright and dark material tends to gradually change toward the average
surface over time. This could be because of multiple processes, i.e., impact
gardening/space weathering, and lateral mixing, including thermal and aqueous
alteration, accompanied by changes in composition and physical properties such
as grain size, surface temperature, and porosity (compaction).Comment: Meteoritics and Planetary Science; Dawn at Ceres special issu
The relation between stellar magnetic field geometry and chromospheric activity cycles – II The rapid 120-day magnetic cycle of <i>τ</i> Bootis
One of the aims of the BCool programme is to search for cycles in other stars and to understand how similar they are to the Sun. In this paper, we aim to monitor the evolution of τ Boo’s large-scale magnetic field using high-cadence observations covering its chromospheric activity maximum. For the first time, we detect a polarity switch that is in phase with τ Boo’s 120-day chromospheric activity maximum and its inferred X-ray activity cycle maximum. This means that τ Boo has a very fast magnetic cycle of only 240 days. At activity maximum τ Boo’s large-scale field geometry is very similar to the Sun at activity maximum: it is complex and there is a weak dipolar component. In contrast, we also see the emergence of a strong toroidal component which has not been observed on the Sun, and a potentially overlapping butterfly pattern where the next cycle begins before the previous one has finished
Dynamical Masses of Young Star Clusters in NGC 4038/4039
In order to estimate the masses of the compact, young star clusters in the
merging galaxy pair, NGC 4038/4039 (``the Antennae''), we have obtained medium
and high resolution spectroscopy using ISAAC on VLT-UT1 and UVES on VLT-UT2 of
five such clusters. The velocity dispersions were estimated using the stellar
absorption features of CO at 2.29 microns and metal absorption lines at around
8500 \AA, including lines of the Calcium Triplet. The size scales and light
profiles were measured from HST images. From these data and assuming Virial
equilibrium, we estimated the masses of five clusters. The resulting masses
range from 6.5 x 10^5 to 4.7 x 10^6 M_sun. These masses are large, factor of a
few to more than 10 larger than the typical mass of a globular cluster in the
Milky Way. The mass-to-light ratios for these clusters in the V- and K-bands in
comparison with stellar synthesis models suggest that to first order the IMF
slopes are approximately consistent with Salpeter for a mass range of 0.1 to
100 M_sun. However, the clusters show a significant range of possible IMF
slopes or lower mass cut-offs and that these variations may correlate with the
interstellar environment of the cluster. Comparison with the results of
Fokker-Planck simulations of compact clusters with properties similar to the
clusters studied here, suggest that they are likely to be long-lived and may
lose a substantial fraction of their total mass. This mass loss would make the
star clusters obtain masses which are comparable to the typical mass of a
globular cluster.Comment: 16 pages, 12 figures, A&A accepte
Stability analysis of three exoplanet systems
The orbital solutions of published multi-planet systems are not necessarily
dynamically stable on timescales comparable to the lifetime of the system as a
whole. For this reason, dynamical tests of the architectures of proposed
exoplanetary systems are a critical tool to probe the stability and feasibility
of the candidate planetary systems, with the potential to point the way towards
refined orbital parameters of those planets. Such studies can even help in the
identification of additional companions in such systems. Here we examine the
dynamical stability of three planetary systems, orbiting HD 67087, HD 110014,
and HD 133131A. We use the published radial velocity measurements of the target
stars to determine the best-fit orbital solutions for these planetary systems
using the Systemic console. We then employ the n-body integrator Mercury to
test the stability of a range of orbital solutions lying within 3- of
the nominal best-fit for a duration of 100 Myr. From the results of the n-body
integrations, we infer the best-fit orbital parameters using the Bayesian
package Astroemperor. We find that both HD 110014 and HD 133131A have long-term
stable architectures that lie within the 1- uncertainties of the
nominal best-fit to their previously determined orbital solutions. However, the
HD 67087 system exhibits a strong tendency toward instability on short
timescales. We compare these results to the predictions made from consideration
of the angular momentum deficit criterion, and find that its predictions are
consistent with our findings.Comment: 9 pages, 5 figures, 3 tables. Accepted for publication in MNRA
The reaction and the magnetic dipole moment of the resonance
The reaction has been measured with
the TAPS calorimeter at the Mainz Microtron accelerator facility MAMI for
energies between = 1221--1331 MeV. Cross sections differential in
angle and energy have been determined for all particles in the final state in
three bins of the excitation energy. This reaction channel provides access to
the magnetic dipole moment of the resonance and, for the
first time, a value of has been extracted
- …