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ABSTRACT
The orbital solutions of published multiplanet systems are not necessarily dynamically stable
on time-scales comparable to the lifetime of the system as a whole. For this reason, dynamical
tests of the architectures of proposed exoplanetary systems are a critical tool to probe the
stability and feasibility of the candidate planetary systems, with the potential to point the
way towards refined orbital parameters of those planets. Such studies can even help in the
identification of additional companions in such systems. Here, we examine the dynamical
stability of three planetary systems, orbiting HD 67087, HD 110014, and HD 133131A. We
use the published radial velocity measurements of the target stars to determine the best-fitting
orbital solutions for these planetary systems using the SYSTEMIC console. We then employ the
N-body integrator MERCURY to test the stability of a range of orbital solutions lying within 3σ

of the nominal best fit for a duration of 100 Myr. From the results of the N-body integrations,
we infer the best-fitting orbital parameters using the Bayesian package ASTROEMPEROR. We
find that both HD 110014 and HD 133131A have long-term stable architectures that lie within
the 1σ uncertainties of the nominal best fit to their previously determined orbital solutions.
However, the HD 67087 system exhibits a strong tendency towards instability on short time-
scales. We compare these results to the predictions made from consideration of the angular
momentum deficit criterion, and find that its predictions are consistent with our findings.

Key words: planets and satellites: dynamical evolution and stability – stars: individual:
(HD 67087) – stars: individual: (HD 110014) – stars: individual: (HD 133131A) – stars: plan-
etary systems.

1 IN T RO D U C T I O N

Exoplanets – planets orbiting stars other than the Sun – are
most often identified through indirect means. We observe a star
with periodic behaviour that would otherwise be unexpected and
conclude that the best explanation is the presence of one (or more)
planet(s). We direct the interested reader to Perryman (2018) for a
summary of the various exoplanet detection techniques. By piecing
together the observations of the unexpected behaviour, it is possible
to constrain, to some degree, the orbit and physical nature of
the planets in question. Such inference is, however, not perfect
– particularly when the planets in question have been detected
through observations of the ‘wobble’ of their host star, as is the case
for planets found using the radial velocity technique (e.g. Mayor &
Queloz 1995; Butler & Marcy 1996; Bonfils et al. 2013; Wittenmyer
et al. 2014b; Christiansen et al. 2017), or candidate planets claimed
on the basis of binary star eclipse timing variability (e.g. Lee et al.
2009; Beuermann et al. 2010; Potter et al. 2011; Qian et al. 2011).
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The accurate determination of the (minimum) masses and orbits
of newly discovered exoplanets provides the key data by which
we can understand the variety of outcomes of the planet formation
process. As such, it behooves us to ensure that exoplanet catalogues
contain information that is as accurate and realistic as possible.
Such accurate solutions do not just enable us to properly ascertain
the distribution of planets at the current epoch – they also provide
an important window into the history of the planetary systems we
discover (e.g. Ford 2014; Pu & Wu 2015; Fulton et al. 2017; Wu
et al. 2019), and allow us to predict and plan follow-up observations
through population synthesis models (e.g. Hasegawa & Pudritz
2013; Mordasini 2018; Dulz et al. 2020). For example, the migration
and mutual gravitational interaction of planets have been identified
as being of critical importance to both the observed architectures and
predicted long-term stability of the menagerie of known multiplanet
systems, heretofore identified through radial velocity and transit
surveys (e.g. Pierens & Nelson 2008; Wittenmyer, Horner & Tinney
2012c; Mills et al. 2016; Gillon et al. 2017; Hamers et al. 2017;
Mustill, Davies & Johansen 2017; Childs et al. 2019).

However, the accuracy of orbital parameters of the planetary
companions presented in discovery works is frequently limited
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by the time period covered by the observations that led to the
discovery, which are often enough to claim detection and little
more (Wittenmyer et al. 2016b, 2020). Long-term follow-up of
known planet host systems is therefore desirable to refine the
orbital parameters for known companions, to infer the presence
of additional companions at lower masses and/or larger semimajor
axes (e.g. Becker & Adams 2017; Denham et al. 2019; Horner et al.
2019; Kane et al. 2019; Rickman et al. 2019; Wittenmyer et al.
2019), and to disentangle the complex signals produced by planets
on resonant (e.g. Anglada-Escudé, López-Morales & Chambers
2010; Wittenmyer et al. 2012c, 2014a, 2016a) or eccentric orbits
(e.g. Wittenmyer et al. 2013, 2017c). Equally, due to the relative
paucity of data on which planet discoveries are often based, it is
possible for those initial solutions to change markedly as more data
are acquired. The ultimate extension of this is that, on occasion,
the process by which planetary solutions are fit to observational
data can yield false solutions – essentially finding local minima
in the phase space of all possible orbital solutions that represent a
good theoretical fit to the data while being unphysical. It is therefore
important to check the dynamical feasibility of multiplanet solutions
that appear to present a good fit to observational data – particularly
in those cases where such solutions invoke planets on orbits that
offer the potential for close encounters between the candidate
planets.

Following this logic, we have in the past tested the stability of
multiplanet systems in a variety of environments, including around
main-sequence (Marshall, Horner & Carter 2010; Wittenmyer et al.
2012b, 2015, 2017a), evolved (Wittenmyer et al. 2017b,c; Marshall
et al. 2019), and post-main-sequence stars (Horner et al. 2011,
2012, 2013; Wittenmyer et al. 2012a; Mustill et al. 2013). In
some cases, our results confirmed that the proposed systems were
dynamically feasible as presented in the discovery work, while in
others our analysis demonstrated that alternative explanations must
be sought for the observed behaviour of the claimed ‘planet host’
star (e.g. Horner et al. 2011, 2013). To ensure that our own work
remains robust, we have incorporated such analysis as a standard
part of our own exoplanet discovery papers. We test all published
multiplanet solutions for dynamical stability before placing too
great a confidence in a particular outcome. As an extension to this
approach, we presented a revised Bayesian method to the previously
adopted frequentist stability analysis in Marshall et al. (2019), and
demonstrated the consistency between these approaches.

Rather than using direct dynamical simulations, the stability of
a planetary system can also be inferred from a criterion derived
from the planetary masses, semimajor axes, and conservation of
the angular momentum deficit (AMD; Laskar 2000; Laskar &
Petit 2017). AMD can be interpreted as measuring the degree of
excitation of planetary orbits, with less excited orbits implying
greater stability. The definition of AMD stability has been re-
vised to account for the effect of mean motion resonances and
close encounters on orbital stability (Petit, Laskar & Boué 2017,
2018). Of the systems examined in this work, HD 110014 has
been identified as being weakly stable, while HD 67087 and
HD 133131A are both considered unstable according to AMD (see
figs 6 and 7 of Laskar & Petit 2017). In our previous dynamical
studies, we find good agreement between the stability inferred
from AMD and our dynamical simulations with 13 systems in
common between them, of which 9 were classified unstable and
4 stable, 1 marginally so (Horner et al. 2012; Robertson et al.
2012; Wittenmyer et al. 2012a,b,c, 2014a,c, 2015, 2016a; Endl et al.
2016). In this paper, we examine the dynamical stability of the three
multiplanet systems, HD 67087, HD 110014, and HD 133131A, as

Table 1. Table of references for the radial velocities data used in this work.

Target References

HD 67087 Harakawa et al. (2015)
HD 110114 de Medeiros et al. (2009)
HD 133131A Teske et al. (2016)

a critical examination of their stability and a further test of the
reliability of AMD for the identification of instability in exoplanet
systems.

HD 67087, observed as a part of the Japanese Okayama Planet
Search programme (Sato et al. 2005), was discovered to host a pair
of exoplanets by Harakawa et al. (2015). The candidate planets are
super-Jupiters, with m sin i of 3.1MJup and 4.9MJup, respectively.
They move on orbits with (a, e) of (1.08, 0.17) and (3.86, 0.76),
respectively, which would place the outer planet among the most
eccentric Jovian planets identified thus far. The authors noted that
the orbit and mass of the outer planet are poorly constrained.

HD 110014 was found to host a planet by de Medeiros et al.
(2009); the second companion was identified through re-analysis
of archival spectra taken by the FEROS instrument (Kaufer &
Pasquini 1998) looking to derive an updated orbit for planet b
(Soto, Jenkins & Jones 2015). The two candidate planets have
super-Jupiter masses, and Soto et al. (2015) cautioned that the
proposed second planet was worryingly close in period to the typical
rotation period of K giant stars. However, their analysis of the stellar
photometry was inconclusive in identifying its activity as the root
cause for the secondary signal.

HD 133131A’s planetary companions were reported in Teske
et al. (2016), based on precise radial velocities primarily from the
Magellan Planet Finder Spectrograph (Crane, Shectman & Butler
2006; Crane et al. 2008, 2010). Their data supported the presence
of two planets, where the outer planet is poorly constrained due to
its long period. Teske et al. (2016) ran a single dynamical stability
simulation on the adopted solution and found it to remain stable
for the full 105 yr duration. The authors presented both a low-
and high-eccentricity solution, reasoning that in a formal sense the
two solutions were essentially indistinguishable. They favoured the
low-eccentricity model (e2 = 0.2) for dynamical stability reasons.
There is precedent in the literature for this choice, since it does
happen that the formal best fit can be dynamically unfeasible while
a slightly worse fit pushes the system into a region of stability
(e.g. Mustill et al. 2013; Trifonov et al. 2014; Wittenmyer et al.
2017a).

The remainder of the paper is laid out as follows. We present a
brief summary of the radial velocity observations and other data
(e.g. stellar parameters) used for our re-analysis in Section 2 along
with an explanation of our modelling approach. The results of the
reanalyses for each target are shown in Section 3. A brief discussion
of our findings in comparison to previous work on these systems
is presented in Section 4. Finally, we present our conclusions in
Section 5.

2 O B S E RVAT I O N S A N D ME T H O D S

2.1 Radial velocity data

We compiled radial velocity values from the literature for the
three systems examined in this work; the origins of these data are
summarized in Table 1.
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2282 J. P. Marshall et al.

Table 2. Planetary orbital parameters based on SYSTEMIC fits to radial velocity data. Semimajor axes were calculated using measured orbital
periods and stellar masses taken from the NASA Exoplanet Archive.

HD 67087 b HD 67087 c HD 110014 b HD 110014 c HD 133131A b HD 133131A c

Amplitude (m s−1) 74.0 ± 3.0 54.0 ± 4.0 36.949 ± 0.750 5.956 ± 1.617 135.315 ± 3.640 64.660 ± 3.966
Period (d) 352.3 ± 1.7 2380+167

−141 877.5 ± 5.2 130.125 ± 0.096 648. ± 3 5342+7783
−2009

Mean anomaly (deg) 35+20
−16 94+28

−35 155 ± 4 231 ± 3 265 ± 11 188+104
−123

Longitude (deg) 281+18
−15 256 (fixed) 41 ± 3 302 ± 4 16.6+4.7

−4.5 110+25
−43

Eccentricity 0.18+0.07
−0.06 0.51 (fixed) 0.259 ± 0.017 0.410 ± 0.022 0.340 ± 0.032 0.63+0.25

−0.20

M sin i (MJup) 3.10+0.15
−0.14 3.73+0.47

−0.45 10.61 ± 0.25 3.228 ± 0.098 1.418 ± 0.036 0.52+0.45
−0.17

Semimajor axis (au) 1.08 3.87 2.32 0.65 1.44 5.88

Figure 1. Visualization of the dynamical stability of the HD 67087 planetary system. On the left we show the log(lifetime) as a function of the largest initial
eccentricity fit to HD 67087 b and HD 67087 c, and the ratio of their orbital semimajor axes, while on the right we show the log(lifetime) as a function of the
largest initial eccentricity fit and the mass ratio between HD 67087 b and HD 67087 c. The colour bar shows the goodness of fit (χ2) of each solution tested.
We find no stable solutions that last the full 100 Myr duration of the dynamical simulations close to the nominal best-fitting orbital solution for the planets,
with the only stable solutions lying at the extreme edges of the parameter space towards low eccentricities, large separations, and low mass ratios.

2.2 Modelling

To test the dynamical stability of these proposed planetary sys-
tems, we follow the updated dynamical methodology outlined
in our previous work (Wittenmyer et al. 2017a; Marshall et al.
2019).

In brief, we perform a fit to the published velocity data using the
SYSTEMIC console (Meschiari et al. 2009), the results of which are
presented in Table 2. We then use the Markov Chain Monte Carlo
(MCMC) tool within SYSTEMIC to explore the parameter space about
the best fit. The MCMC chain runs for 107 steps, discarding the first
10 000, and we then draw the trial solutions for our dynamical
stability simulations from these posteriors. Using these data, we
populate three ‘annuli’ in χ2 space corresponding to the ranges
0−1σ , 1−2σ , and 2−3σ from the best fit. Each annulus contains
42 025 unique realizations drawn from the MCMC chain. The
innermost annulus was drawn from the lowest 68.3 per cent of all
χ2 values, the middle annulus contained the next best 27.2 per cent
of values, and the outer annulus contained the worst 4.5 per cent of
solutions (i.e. those falling 2−3σ away from the best fit). The result
is a set of ‘clones’ that fall within 3σ of the best-fitting solution,
thus representing a reasonable region of parameter space within
which we explore the dynamical stability of the proposed planetary
system, using the constraints afforded by the existing observational
data.

We then proceed to perform lengthy dynamical simulations of
each of the 126 075 solutions generated by this method. We used the
hybrid integrator within the N-body dynamics package MERCURY

(Chambers 1999) to integrate the solutions forward in time for a
period of 100 Myr. The simulations are brought to a premature end
if either of the planets being simulated is ejected from the system,
is flung in to the central star, or if the two planets collide with one
another. When such events occur, the time at which the collision
or ejection occurred is recorded, giving us the lifetime for that
particular run. As such, our suite of simulations yields 126 075
tests of the candidate planetary system, allowing us to study how its
stability varies as a function of the particular details of the solution
chosen to explain the observational data.

We determine the best-fitting parameters and uncertainties for
each system using the code Exoplanet Mcmc Parallel tEmpering Ra-
dial velOcity fitteR1 (ASTROEMPEROR), which uses thermodynamic
methods combined with MCMC. Our approach has previously
been established and described in Marshall et al. (2019) and
Wittenmyer et al. (2019). We summarize the input values and
constraints used in the fitting presented in this work for the sake
of reproducibility. Given that our goal was to test the feasibility
of the exoplanetary systems as presented in the literature, we
restricted ASTROEMPEROR to consider zero, one, or two planetary
signals in the radial velocity data; dynamical configurations with
additional planetary companions in orbits that could mimic a single
planetary companion, e.g. two resonant planets looking like a single
eccentric planet (for a total of three planetary companions), were not

1https://github.com/ReddTea/astroEMPEROR
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Stability analysis of three exoplanet systems 2283

considered in this analysis. The planetary fitting parameters were the
orbital period (P), line-of-sight mass (M sin i), orbital eccentricity
(e), longitude of periastron (ω), and mean anomaly (M). We also
include an additional jitter term when fitting the data. We initialized
the locations of the walkers in the MCMC fitting at their best-
fitting values from the SYSTEMIC console fit, plus a small random
scatter. The priors on each parameter were flat and unbounded,
i.e. with uniform probability between ±∞, except for the orbital
eccentricities that had folded Gaussian priors, and the jitter term,
which was a Jeffries function (but still unbound between ±∞). The
parameter space was surveyed by 150 walkers at 5 temperatures
over 15 000 steps, with the first 5000 steps being discarded as the
burn-in phase.

3 R ESULTS

3.1 HD 67087

The HD 67087 system is catastrophically unstable, as illustrated by
the results of our stability analysis in Fig. 1. In this plot, it is clear
that the most stable solutions cluster towards the largest ratios of
semimajor axes and the smallest eccentricities. Even in this limit,
the longest lived solutions that plausibly represent the observations
are still only stable for 106 yr, out of a total integration time of
108 yr. This leads us to the interpretation that the HD 67087 system,
as inferred from the available radial velocity data, is dynamically
infeasible. Given this high degree of instability, we do not attempt to
determine a global best-fitting solution for the system parameters.

3.2 HD 110014

The HD 110014 system is found to be dynamically stable, with a
broad swathe of parameter space centred on the nominal solution
producing system architectures that last for the full 108 yr of
our dynamical integrations. We show the results of the stability
analysis, sampling the 3σ parameter space around the nominal
orbital solution determined from the radial velocities in Fig. 2.
The results of the Bayesian analysis, showing what we infer to be
the global best-fitting parameters for the system, are presented in
Fig. 3.

3.3 HD 133131A

The HD 133131A system shows a very complex parameter space in
the stability plots. As one would expect, the stability of the system
generally increases towards lower orbital eccentricities and lower
mass ratios between the two planetary components. The overall
stability appears to be insensitive to the ratio of the semimajor
axes for the planets, with long-lived solutions possible across the
full range of values probed for this parameter. Interestingly, we
demonstrate that stable architectures for the planetary system exist
in both the high and low orbital eccentricity scenarios for the system.
We show the results of the stability analysis, sampling the 3σ pa-
rameter space around the nominal orbital solution determined from
the radial velocities, in Fig. 4. The results of the Bayesian analysis,
showing what we infer to be the global best-fitting parameters for
the system, are presented in Fig. 5. Further observations to refine
the planet properties of this system will be required to definitively
characterize its dynamical stability.

4 D ISCUSSION

The results of our dynamical modelling for the three systems
considered in this work, HD 67087, HD 110014, and HD 133131A,
show three distinctly different outcomes. For the first system tested,
HD 67087, we find no orbital solutions that exhibit long-term
dynamical stability. As a result, we are forced to conclude that,
if the planets proposed to orbit that star are real, they must move on
orbits significantly different from those proposed in the discovery
work and sampled in our simulations. It seems likely that new radial
velocity observations of HD 67087, extending the temporal baseline
over which the star has been observed, will yield fresh insights to the
system – either significantly constraining and altering the proposed
orbit for the outermost planet or even revealing that the eccentric
solution is in fact the result of multiple unresolved planets at large
orbital radii. Such an outcome is far from unusual – and, indeed,
it is often the case that, with more data, a single eccentric planet
seen in RV data is resolved to actually be two planets moving
on near-circular orbits (e.g. Wittenmyer et al. 2013, 2019). For
now, however, we can do no more than to call the existence of
HD 67087 c into question, pending the acquisition of such additional
data.

In contrast to the instability of HD 67087, our simulations of the
HD 110014 system reveal that the best-fitting solution for that two-
planet system lies in a broad region of strong dynamical stability. In
this case, our simulations simply reveal that the system, as proposed
in the discovery work, is dynamically feasible – and in a sense, the
simulations add little beyond that.

The case of HD 133131A is somewhat more interesting. Here, our
simulations reveal that solutions that fit the observational data can
exhibit both strong dynamical stability and extreme instability (with
dynamical lifetimes of just a few years). Both the high- and low-
eccentricity solutions considered in Teske et al. (2016) can produce
scenarios that are stable for the full 100 Myr of our simulations.
In both the high- and low-eccentricity cases, the stable solutions
cluster around the least eccentric available scenarios. The more
widely separated the two planets, the more eccentric their orbits can
be before instability occurs – a natural result of the stability being
driven by the minimum separation between the planets, rather than
their orbital semimajor axes. The more widely the semimajor axes
of the orbits are spaced, the more eccentric they must be to bring
the planets into close proximity. These results show once again the
benefits inherent to such dynamical analysis – reminding us how
studying the dynamical evolution of a given system can help to
provide stronger constraints on the orbits of the planets contained
therein than is possible by studying the observational data on their
own.

A comparison of our results to the analysis of the AMD stability
criterion presented in Laskar & Petit (2017) shows agreement
between the two different techniques for the dynamical stability
of the three systems. While HD 67087 and HD 110014 are,
respectively, very clear-cut cases of an unstable and a stable system,
HD 133131A exhibits a more complex behaviour. HD 133131A may
be dynamically stable, but the inferred lifetime for the planetary
system as proposed is sensitive to the chosen initial conditions;
this system therefore represents an edge case of stability where
limitations of available data and the respective analyses provide no
clear answer to the veracity of the previously inferred planetary
system.

Combining these new results with our previous dynamical anal-
yses, as summarized in the introduction, we may consider that
the AMD criterion is a reliable estimator of stability for planetary
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2284 J. P. Marshall et al.

Figure 2. Visualization of the dynamical stability of the HD 110014 planetary system. On the left we show the log (lifetime) as a function of the largest initial
eccentricity fit to HD 110014 b and HD 110014 c and the ratio of their orbital semimajor axes, while on the right we show the log (lifetime) as a function of
the largest initial eccentricity fit and the mass ratio between HD 110014 b and HD 110014 c. The colour bar shows the goodness of fit (χ2) of each solution
tested. We find stable solutions that last the full 100 Myr duration of the dynamical simulations close to the nominal best-fitting orbital solution for the planets.

Figure 3. Bayesian posterior distributions of HD 110014 b’s and HD 110014 c’s orbital parameters derived from ASTROEMPEROR. From left to right (top to
bottom), the parameters are Kb, Pb, ωb, φb, eb, Kc, Pc, ωc, φc, and ec. Credible intervals are denoted by the solid contours with increments of 1σ .
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Stability analysis of three exoplanet systems 2285

Figure 4. Plots of the dynamical stability of the HD 133131A planetary system for both the high-eccentricity (top) and low-eccentricity (bottom) orbital
solutions. On the left we show the log(lifetime) as a function of the largest initial eccentricity fit to HD 133131A b and HD 133131A c, and the ratio of their
orbital semimajor axes, while on the right we show the log(lifetime) as a function of the largest initial eccentricity fit and the mass ratio between HD 133131A
b and HD 133131A c. The colour bar shows the goodness of fit (χ2) of each solution tested. The stability revealed by our dynamical simulations is complex,
with regions of both extreme stability (log(lifetime) ∼ 100 Myr) and instability (log(lifetime) ∼ 100 yr) lying within the 3σ reach of the nominal best-fitting
orbital parameters.

systems. There are 13 systems (out of 131 considered in that work)
from Laskar & Petit (2017) that have had dynamical modelling
of their stability. In Laskar & Petit (2017), a planetary system is
considered strongly stable if all planet pairs have β values less than
1, such that collisions are impossible while weakly stable planetary
systems are those in which the innermost planet might collide
with the star without disrupting the remainder of the planetary
system. In five systems, both the AMD criterion and dynamical
modelling agree on their dynamical stability (HD 142, HD 159868,
NN Ser (AB), GJ 832, and HD 110014); the planets in each of these
systems are dynamically well separated and therefore not strongly
interacting (Horner et al. 2011; Wittenmyer et al. 2012b, 2014c; this
work). Six systems are unstable according to the AMD criterion with
values of β in the range 1–5 for the planet pair (HD 155358, 24
Sex, HD 200964, HD 73526, HD 33844, and HD 47366), but all
are in mean motion resonances and have been demonstrated to be
dynamically stable through N-body simulations (Robertson et al.
2012; Wittenmyer et al. 2012c, 2014a, 2016a; Marshall et al. 2019).
The remaining two systems (HD 67087 and HD 133131A) are
dynamically unstable in both the AMD and dynamical analysis (this
work). However, dynamical analysis of the HD 133131A system
reveals regions of dynamical stability consistent with the observed
radial velocities, prompting the need for further investigation of
this system and its architecture. Neither of these two unstable
planetary systems have β values radically different from those
of the planetary systems in resonance, or each other, such that
determining their stability can only be carried out using dynamical

simulations. The existence of such systems in the known planet
population as demonstrated in our analysis therefore showcases
the necessity of performing long duration dynamical analyses of
proposed planetary system architectures to reveal the complex
dynamical interplay between high-mass planets, the evolution of
their orbital elements, and determine what constraints this places
on the available parameter space for the endurance of the proposed
planetary system over its lifetime.

5 C O N C L U S I O N S

We re-analysed the dynamical stability of the exoplanet systems
around HD 67087, HD 110014, and HD 133131A, using available
radial velocity data. These three planetary systems have poorly
constrained orbital parameters and had previously been identified
as being potentially unstable. We combine a determination of the
best-fitting orbital parameters from least-squares fitting to the data
with N-body simulations to determine the global best-fitting solution
for the planetary system architectures, and thereafter determine the
probability distribution of the orbital solutions through Bayesian
inference.

Our dynamical analysis confirms that the published planetary
system parameters for HD 67087 b and HD 67087 c are dynamically
unstable on very short time-scales, and we must conclude that the
system, as published, is dynamically unfeasible. As more data are
collected for the HD 67087 system, it seems likely that the true
nature of the candidate planets therein will be revealed, and that fu-
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2286 J. P. Marshall et al.

Figure 5. Bayesian posterior distributions of HD 133131A b’s and HD 133131A c’s orbital parameters derived from ASTROEMPEROR. From left to right (top
to bottom), the parameters are Kb, Pb, ωb, φb, eb, Kc, Pc, ωc, φc, and ec. Credible intervals are denoted by the solid contours with increments of 1σ .

Table 3. Results from ASTROEMPEROR exploration of parameter space around SYSTEMIC nominal best-fitting values for
planetary companions to HD 133131A and HD 110014.

HD 133131A b HD 133131A c HD 110014 b HD 110014 c

Amplitude (m s−1) 36.949 ± 0.750 5.956 ± 1.617 135.315 ± 3.640 64.660 ± 3.966
Period (d) 647.816 ± 1.575 3205.648 ± 948.063 865.206 ± 6.170 132.431 ± 0.279
Phase (deg) 261.620 ± 4.850 31.734 ± 98.433 43.753 ± 72.179 341.373 ± 64.346
Longitude (deg) 18.550 ± 2.165 113.777 ± 81.302 146.633 ± 17.229 236.903 ± 16.452
Eccentricity 0.341 ± 0.021 0.263 ± 0.145 0.011 ± 0.015 0.294 ± 0.076
M sin i (MJup) 1.428 ± 0.099 0.388 ± 0.124 10.622 ± 0.757 2.581 ± 0.247
Semimajor axis (au) 1.435 ± 0.046 4.153 ± 0.800 2.350 ± 0.075 0.668 ± 0.023

Jitter (m s−1) 3.557 ± 1.254 0.466 ± 0.419 6.060 ± 1.856 13.350 ± 1.492
Offset (m s−1) -9.333 ± 4.787 12.321 ± 7.543 52.575 ± 4.737 72.198 ± 4.541
MA coefficient 0.714 ± 0.531 0.466 ± 0.419 0.697 ± 0.214 13.350 ± 1.492
MA time-scale (d) 4.158 ± 2.815 12.321 ± 7.543 9.793 ± 2.488 72.198 ± 4.541
Acceleration (m s−1 yr−1) −1.435 – −21.620 –
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ture planetary solutions for that system will veer towards dynamical
stability as the planetary orbits become better constrained.

In the case of HD 110014 b and HD 110014 c we demonstrate that
the system parameters can be dynamically stable for the full duration
of our 100 Myr integrations. The third system, HD 133131A,
exhibits much more complex behaviour, with HD 133131A b and
HD 133131A c being strongly unstable over much of the parameter
space exhibited in this work, including the region encompassing the
nominal best fit to the orbital parameters. In agreement with previous
analysis of this system, we strongly disfavour a high-eccentricity
orbital solution for planet c. Additional observations of this system
will be required to more precisely determine the planetary properties
for HD 133131A b and HD 133131A c and thereby categorically
rule on the plausibility of the proposed planetary system.

These results demonstrate the complementarity of various tech-
niques to deduce the stability of planetary systems, with good
agreement between the results of our various works and those of
the AMD approach. We highlight the appropriateness of dynamical
simulations for determining the long-term stability of planetary
systems in the presence of strongly interacting planets, which
although costly in a computing sense capture the full essence of
planetary interaction in such systems that is not possible with
other techniques. We finally assert that the orbital parameters for
these three systems that have been determined in this work (as
summarized in Table 3) should be the accepted values adopted by
exoplanet archives or elsewhere. This work is thus one additional
thread in the tapestry of cross-checking of published results through
various means that ensures the reliability of archival information on
planetary properties and the architectures of planetary systems that
are essential to inform models of the formation and evolution of the
exoplanet population (e.g. Childs et al. 2019; Denham et al. 2019;
He, Ford & Ragozzine 2020; Volk & Malhotra 2020).

AC K N OW L E D G E M E N T S

We thank the anonymous referee for their comments that helped
to improve the article. This research has made use of NASA’s
Astrophysics Data System and the SIMBAD database, operated
at CDS, Strasbourg, France. JPM acknowledges research support
by the Ministry of Science and Technology of Taiwan under
grants MOST104-2628-M-001-004-MY3 and MOST107-2119-M-
001-031-MY3, and Academia Sinica under grant AS-IA-106-M03.
This research has made use of the following PYTHON packages:
MATPLOTLIB (Hunter 2007), NUMPY (Oliphant 2006), PYGTC (Boc-
quet & Carter 2016), EMCEE (Foreman-Mackey et al. 2013), CORNER

(Foreman-Mackey 2016), and MERCURY (Chambers 1999).

RE F EREN C ES
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