257 research outputs found

    Invariant Variation Problems

    Full text link
    The problems in variation here concerned are such as to admit a continuous group (in Lie's sense); the conclusions that emerge from the corresponding differential equations find their most general expression in the theorems formulated in Section 1 and proved in following sections. Concerning these differential equations that arise from problems of variation, far more precise statements can be made than about arbitrary differential equations admitting of a group, which are the subject of Lie's researches. What is to follow, therefore, represents a combination of the methods of the formal calculus of variations with those of Lie's group theory. For special groups and problems in variation, this combination of methods is not new; I may cite Hamel and Herglotz for special finite groups, Lorentz and his pupils (for instance Fokker), Weyl and Klein for special infinite groups. Especially Klein's second Note and the present developments have been mutually influenced by each other, in which regard I may refer to the concluding remarks of Klein's Note.Comment: M. A. Tavel's English translation of Noether's Theorems (1918), reproduced by Frank Y. Wang. Thanks to Lloyd Kannenberg for corrigend

    Development of a Portable Device for Thermoelectrical Power Measurement—Application to the Inspection of Duplex Stainless Steel Components

    Get PDF
    Some cast components of the primary loop of French Pressurized Water Reactors are made of cast duplex stainless steels. The mechanical characteristics of these components, working in the temperature range from 285°C to 325°C, may be altered by thermal aging : the hardness of the materials increases whereas its toughness decreases with aging time and temperature. The metallurgical explanation of this phenomena is the unmixing of the ferritic Fe-Cr-Ni solid solution by spinodal decomposition and the precipitation of intermetallic G-phase particles rich in nickel and silicium [1]

    Poisoning by non-edible squash: retrospective series of 353 patients from French Poison Control Centers

    Get PDF
    CONTEXT: Among the numerous varieties of squash that exist, some are edible while other bitter-tasting ones are not fit for human consumption. Cases of confusion seem to be multiplying and are characterized by digestive problems (diarrhea, vomiting, and abdominal pain). METHODS: This is a descriptive retrospective study of cases of exposure reported to French Poison Control Centers between 1 January 2012 and 12 December 2016. RESULTS: 353 patients were included, with 71.7% belonging to collective cases of poisoning. The male to female sex ratio was 0.75 for an average age of 38.2 ± 23.6 years. The circumstances of exposure were dietary for 337 patients (95.5%). The majority of the squash consumed was purchased at a store (55.8%) but some also came from the garden (25.5%). 204 patients (57.8%) mostly presented with diarrhea, vomiting, abdominal pain, sometimes with the consequent dehydration, hypotension, tachycardia, headaches, or vertigo. There were no deaths or severe (Poisoning Severity Score (PSS) 3) cases, but there were 14 patients (4.0%) of moderate severity, 190 patients (53.8%) of minor severity (PSS 1), and 149 patients (42.2%) without severity (PSS 0) but among which we include the bitter taste of the squash. The average age of PSS 2 patients was significantly (p = .003) older than that of the PSS <2 patients. CONCLUSION: As the first consequential series in Europe, our study shows that exposure to non-edible squash is frequent. Usually benign, poisoning could be the consequence of the irritating effect of certain cucurbits, the molecules responsible for the taste and toxicity of the fruits. In terms of prevention therefore, we recommend disposing of any squash with a bitter taste

    The XMM-Newton Wide-Field Survey in the COSMOS field (XMM-COSMOS): demography and multiwavelength properties of obscured and unobscured luminous AGN

    Get PDF
    We report the final optical identifications of the medium-depth (~60 ksec), contiguous (2 deg^2) XMM-Newton survey of the COSMOS field. XMM-Newton has detected ~800 X-ray sources down to limiting fluxes of ~5x10^{-16}, ~3x10^{-15}, and ~7x10^{-15} erg/cm2/s in the 0.5-2 keV, 2-10 keV and 5-10 keV bands, respectively. The work is complemented by an extensive collection of multi-wavelength data from 24 micron to UV, available from the COSMOS survey, for each of the X-ray sources, including spectroscopic redshifts for ~50% of the sample, and high-quality photometric redshifts for the rest. The XMM and multiwavelength flux limits are well matched: 1760 (98%) of the X-ray sources have optical counterparts, 1711 (~95%) have IRAC counterparts, and 1394 (~78%) have MIPS 24micron detections. Thanks to the redshift completeness (almost 100%) we were able to constrain the high-luminosity tail of the X-ray luminosity function confirming that the peak of the number density of logL_X>44.5 AGN is at z~2. Spectroscopically-identified obscured and unobscured AGN, as well as normal and starforming galaxies, present well-defined optical and infrared properties. We devised a robust method to identify a sample of ~150 high redshift (z>1), obscured AGN candidates for which optical spectroscopy is not available. We were able to determine that the fraction of the obscured AGN population at the highest (L_X>10^{44} erg s^{-1}) X-ray luminosity is ~15-30% when selection effects are taken into account, providing an important observational constraint for X-ray background synthesis. We studied in detail the optical spectrum and the overall spectral energy distribution of a prototypical Type 2 QSO, caught in a stage transitioning from being starburst dominated to AGN dominated, which was possible to isolate only thanks to the combination of X-ray and infrared observations.Comment: ApJ, in press. 59 pages, 14 figures, 2 Tables. A few typos corrected and a reference added. Table 2 is also available at http://www.mpe.mpg.de/XMMCosmos/xmm53_release ; a version of the paper in ApJ format (27 pages) is available at http://www.mpe.mpg.de/XMMCosmos/xmm53_release/brusa_xmmcosmos_optid.pd

    Sucrose helps regulate cold acclimation of Arabidopsis thaliana

    Get PDF
    A test was carried out to see if sucrose could regulate cold-acclimation-associated gene expression in Arabidopsis. In plants and excised leaves, sucrose caused an increase in GUS activity, as a reporter for the activity of the cold-responsive COR78 promoter. This increase was transient at 21 °C but lasted for at least 4 d at 4 °C in continuous darkness. However, at 4 °C with a 16 h photoperiod, GUS activity was similarly high with solutions lacking sucrose or with different concentrations of sucrose. In peeled lower epidermis in the cold dark environment, 40 mM sucrose increased COR78 transcript abundance to substantially above that in the controls, but sorbitol had no effect. Similarly to the cold and dark conditions, sucrose increased COR78 transcript abundance in the epidermis in the warm light and warm dark environments, but not in a cold light environment. Sucrose had much less effect on COR78 transcript abundance in leaves without the lower epidermis. Thus sucrose regulates expression of COR78, possibly mainly in the epidermis, at the level of transcription. Furthermore, 40 mM sucrose at 4 °C for 24 h in constant darkness was sufficient to give the same GUS activity as in fully acclimated plants of the same age in a 16 h photoperiod, although by 48 h, GUS activity had become intermediate between control and fully cold-acclimated plants. Thus sucrose has a regulatory role in the acclimation of whole plants to cold and this may be important during diurnal dark periods

    Precision photometric redshift calibration for galaxy–galaxy weak lensing

    Get PDF
    Accurate photometric redshifts are among the key requirements for precision weak lensing measurements. Both the large size of the Sloan Digital Sky Survey (SDSS) and the existence of large spectroscopic redshift samples that are flux-limited beyond its depth have made it the optimal data source for developing methods to properly calibrate photometric redshifts for lensing. Here, we focus on galaxy–galaxy lensing in a survey with spectroscopic lens redshifts, as in the SDSS. We develop statistics that quantify the effect of source redshift errors on the lensing calibration and on the weighting scheme, and show how they can be used in the presence of redshift failure and sampling variance. We then demonstrate their use with 2838 source galaxies with spectroscopy from DEEP2 and zCOSMOS, evaluating several public photometric redshift algorithms, in two cases including a full p(z) for each object, and find lensing calibration biases as low as <1 per cent (due to fortuitous cancellation of two types of bias) or as high as 20 per cent for methods in active use (despite the small mean photoz bias of these algorithms). Our work demonstrates that lensing-specific statistics must be used to reliably calibrate the lensing signal, due to asymmetric effects of (frequently non-Gaussian) photoz errors. We also demonstrate that large-scale structure (LSS) can strongly impact the photoz calibration and its error estimation, due to a correlation between the LSS and the photoz errors, and argue that at least two independent degree-scale spectroscopic samples are needed to suppress its effects. Given the size of our spectroscopic sample, we can reduce the galaxy–galaxy lensing calibration error well below current SDSS statistical errors

    Usefulness of Routine Fractional Flow Reserve for Clinical Management of Coronary Artery Disease in Patients With Diabetes

    Get PDF
    Importance: Approximately one-third of patients considered for coronary revascularization have diabetes, which is a major determinant of clinical outcomes, often influencing the choice of the revascularization strategy. The usefulness of fractional flow reserve (FFR) to guide treatment in this population is understudied and has been questioned. Objective: To evaluate the usefulness and rate of major adverse cardiovascular events (MACE) of integrating FFR in management decisions for patients with diabetes who undergo coronary angiography. Design, setting, and participants: This cross-sectional study used data from the PRIME-FFR study derived from the merger of the POST-IT study (Portuguese Study on the Evaluation of FFR-Guided Treatment of Coronary Disease [March 2012-November 2013]) and R3F study (French Study of FFR Integrated Multicenter Registries Implementation of FFR in Routine Practice [October 2008-June 2010]), 2 prospective multicenter registries that shared a common design. A population of all-comers for whom angiography disclosed ambiguous lesions was analyzed for rates, patterns, and outcomes associated with management reclassification, including revascularization deferral, in patients with vs without diabetes. Data analysis was performed from June to August 2018. Main outcomes and measures: Death from any cause, myocardial infarction, or unplanned revascularization (MACE) at 1 year. Results: Among 1983 patients (1503 [77%] male; mean [SD] age, 65 [10] years), 701 had diabetes, and FFR was performed for 1.4 lesions per patient (58.2% of lesions in the left anterior descending artery; mean [SD] stenosis, 56% [11%]; mean [SD] FFR, 0.81 [0.01]). Reclassification by FFR was high and similar in patients with and without diabetes (41.2% vs 37.5%, P = .13), but reclassification from medical treatment to revascularization was more frequent in the former (142 of 342 [41.5%] vs 230 of 730 [31.5%], P = .001). There was no statistical difference between the 1-year rates of MACE in reclassified (9.7%) and nonreclassified patients (12.0%) (P = .37). Among patients with diabetes, FFR-based deferral identified patients with a lower risk of MACE at 12 months (25 of 296 [8.4%]) compared with those undergoing revascularization (47 of 257 [13.1%]) (P = .04), and the rate was of the same magnitude of the observed rate among deferred patients without diabetes (7.9%, P = .87). Status of insulin treatment had no association with outcomes. Patients (6.6% of the population) in whom FFR was disregarded had the highest MACE rates regardless of diabetes status. Conclusions and relevance: Routine integration of FFR for the management of coronary artery disease in patients with diabetes may be associated with a high rate of treatment reclassification. Management strategies guided by FFR, including revascularization deferral, may be useful for patients with diabetes.info:eu-repo/semantics/publishedVersio

    Precision photometric redshift calibration for galaxy-galaxy weak lensing

    Get PDF
    Accurate photometric redshifts are among the key requirements for precision weak lensing measurements. Both the large size of the Sloan Digital Sky Survey (SDSS) and the existence of large spectroscopic redshift samples that are flux-limited beyond its depth have made it the optimal data source for developing methods to properly calibrate photometric redshifts for lensing. Here, we focus on galaxy-galaxy lensing in a survey with spectroscopic lens redshifts, as in the SDSS. We develop statistics that quantify the effect of source redshift errors on the lensing calibration and on the weighting scheme, and show how they can be used in the presence of redshift failure and sampling variance. We then demonstrate their use with 2838 source galaxies with spectroscopy from DEEP2 and zCOSMOS, evaluating several public photometric redshift algorithms, in two cases including a full p(z) for each object, and find lensing calibration biases as low as <1 per cent (due to fortuitous cancellation of two types of bias) or as high as 20 per cent for methods in active use (despite the small mean photoz bias of these algorithms). Our work demonstrates that lensing-specific statistics must be used to reliably calibrate the lensing signal, due to asymmetric effects of (frequently non-Gaussian) photoz errors. We also demonstrate that large-scale structure (LSS) can strongly impact the photoz calibration and its error estimation, due to a correlation between the LSS and the photoz errors, and argue that at least two independent degree-scale spectroscopic samples are needed to suppress its effects. Given the size of our spectroscopic sample, we can reduce the galaxy-galaxy lensing calibration error well below current SDSS statistical error
    • 

    corecore