538 research outputs found
Comparisons between SCIAMACHY atmospheric CO<sub>2</sub> retrieved using (FSI) WFM-DOAS to ground based FTIR data and the TM3 chemistry transport model
International audienceAtmospheric CO2 concentrations, retrieved from spectral measurements made in the near infrared (NIR) by the SCIAMACHY instrument, using Full Spectral Initiation Weighting Function Modified Differential Optical Absorption Spectroscopy (FSI WFM-DOAS), are compared to ground based Fourier Transform Infrared (FTIR) data and to the output from a global chemistry-transport model. Analysis of the FSI WFM-DOAS retrievals with respect to the ground based FTIR instrument, located at Egbert, Canada, show good agreement with an average negative bias of approximately ?4.0% with a standard deviation of ~3.0%. This bias which exhibits an apparent seasonal trend, is of unknown origin, though slight differences between the averaging kernels of the instruments and the limited temporal coverage of the FTIR data may be the cause. The relative scatter of the retrieved vertical column densities is comparable to the spread of the FTIR measurements themselves. Normalizing the CO2 columns using the surface pressure does not affect the magnitude of this bias although it slightly increases the scatter of the FSI data. Comparisons of the FSI retrievals to the TM3 global chemistry-transport model, performed over four selected Northern Hemisphere scenes show good agreement. The correlation, between the time series of the SCIAMACHY and model monthly scene averages, are ~0.7 or greater, demonstrating the ability of SCIAMACHY to detect seasonal changes in the CO2 distribution. The amplitude of the seasonal cycle, peak to peak, observed by SCIAMACHY however, is overestimated by a factor of 2?3, which cannot be explained. The yearly means detected by SCIAMACHY are within 2% of those of the model with the mean difference between the CO2 distributions also approximately 2.0%. Additionally, analysis of the retrieved CO2 distributions reveals structure not evident in the model fields which correlates well with land classification type. From these comparisons, the overall precision and bias of the CO2 columns retrieved by the FSI algorithm are estimated to be close to 1.0% and <4.0% respectively
Simultaneous atmospheric measurements using two Fourier transform infrared spectrometers at the Polar Environment Atmospheric Research Laboratory during spring 2006, and comparisons with the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer
International audienceThe 2006 Canadian Arctic ACE (Atmospheric Chemistry Experiment) Validation Campaign collected measurements at the Polar Environment Atmospheric Research Laboratory (PEARL, 80.05° N, 86.42° W, 610 m above sea level) at Eureka, Canada from 17 February to 31 March 2006. Two of the ten instruments involved in the campaign, both Fourier transform spectrometers (FTSs), were operated simultaneously, recording atmospheric solar absorption spectra. The first instrument was an ABB Bomem DA8 high-resolution infrared FTS. The second instrument was the Portable Atmospheric Research Interferometric Spectrometer for the Infrared (PARIS-IR), the ground-based version of the satellite-borne FTS on the ACE satellite (ACE-FTS). From the measurements collected by these two ground-based instruments, total column densities of seven stratospheric trace gases (O3, HNO3, NO2, HCl, HF, NO, and ClONO2 were retrieved using the optimal estimation method and these results were compared. Since the two instruments sampled the same portions of atmosphere by synchronizing observations during the campaign, the biases in retrieved columns from the two spectrometers represent the instrumental differences. These differences were consistent with those seen in previous FTS intercomparison studies. Partial column results from the ground-based spectrometers were also compared with partial columns derived from ACE-FTS version 2.2 (including updates for O3, HDO and N2O5 profiles and the differences found were consistent with the other validation comparison studies for the ACE-FTS version 2.2 data products. Column densities of O3, HCl, ClONO2, and HNO3 from the three FTSs were normalized with respect to HF and used to probe the time evolution of the chemical constituents in the atmosphere over Eureka during spring 2006
Recommended from our members
Lunar and solar FTIR nitric acid measurements at Eureka in winter 2001/2002: comparisons with observations at Thule and Kiruna and with CMAM and SLIMCAT model calculations
For the first time, vertical column measurements of (HNO3) above the Arctic Stratospheric Ozone Observatory (AStrO) at Eureka (80N, 86W), Canada, have been made during polar night using lunar spectra recorded with a Fourier Transform Infrared (FTIR) spectrometer, from October 2001 to March 2002. AStrO is part of the primary Arctic station of the Network for the Detection of Stratospheric Change (NDSC). These measurements were compared with FTIR measurements at two other NDSC Arctic sites: Thule, Greenland (76.5N, 68.8W) and Kiruna, Sweden (67.8N, 20.4E). The measurements were also compared with two atmospheric models: the Canadian
Middle Atmosphere Model (CMAM) and SLIMCAT. This is the first time that CMAM HNO3 columns have been compared with observations in the Arctic. Eureka lunar measurements are in good agreement with solar ones made with the same instrument. Eureka and Thule HNO3 columns are consistent within measurement error. Differences among HNO3 columns measured at Kiruna and those measured at Eureka and Thule can be explained on the basis of the available sunlight hours and the polar vortex location. The comparison of CMAM HNO3 columns with Eureka and Kiruna data shows good agreement, considering CMAM small inter-annual variability. The warm 2001/02 winter with almost no Polar Stratospheric Clouds (PSCs) makes the comparison of the warm climate version of CMAM with these observations a good test for CMAM under no PSC conditions. SLIMCAT captures the magnitude of HNO3 columns at Eureka, and the day-to-day variability, but generally reports higher HNO3 columns than the CMAM climatological mean columns
Primates in peril: the significance of Brazil, Madagascar, Indonesia and the Democratic Republic of the Congo for global primate conservation
Primates occur in 90 countries, but four—Brazil, Madagascar, Indonesia, and the Democratic Republic of the Congo (DRC)—harbor 65% of the world’s primate species (439) and 60% of these primates are Vulnerable, Endangered, or Critically Endangered (IUCN Red List of Threatened Species 2017-3). Considering their importance for global primate conservation, we examine the anthropogenic pressures each country is facing that place their primate populations at risk. Habitat loss and fragmentation are main threats to primates in Brazil, Madagascar and Indonesia. However, in DRC hunting for the commercial bushmeat trade is the primary threat. Encroachment on primate habitats driven by local and global market demands for food and non-food commodities hunting, illegal trade, the proliferation of invasive species, and human and domestic-animal borne infectious diseases cause habitat loss, population declines, and extirpation. Modeling agricultural expansion in the 21st century for the four countries under a worst-case-scenario, showed a primate range contraction of 78% for Brazil, 72% for Indonesia 62% for Madagascar and 32% for DRC. These pressures unfold in the context of expanding human populations with low levels of development. Weak governance across these four countries may limit effective primate conservation planning. We examine landscape and local approaches to effective primate conservation policies and assess the distribution of protected areas and primates in each country. P rimates in Brazil and Madagascar have 38% of their range inside protected areas, 17% in Indonesia and 14% in DRC, suggesting that the great majority of primate populations remain vulnerable. We list the key challenges faced by the four countries to avert primate extinctions now and in the future. In the short term, effective law enforcement to stop illegal hunting and illegal forest destruction is absolutely key. Long-term success can only be achieved by focusing local and global public awareness, actively engaging with international organizations, multinational businesses and consumer nations to reduce unsustainable demands on the environment. Finally, the four primate range states need to ensure that integrated, sustainable land-use planning for economic development includes the maintenance of biodiversity and intact, functional natural ecosystems
VALIDATION OF ENVISAT-1 LEVEL-2 PRODUCTS RELATED TO LOWER ATMOSPHERE O3 AND NOy CHEMISTRY BY A FTIR QUASI-GLOBAL NETWORK
A coordinated action involving eleven stations of the ground-based Network for Detection of Stratospheric Change (NDSC) equipped with Fourier transform infrared (FTIR) instruments was conducted to contribute to the validation of the three atmospheric chemistry instruments onboard ENVISAT, that are MIPAS, SCIAMACHY and GOMOS.
The target products for validation are total columns of O3, CH4, CO and some important NOy species (NO2, HNO3, NO) and the source gas N2O. Together the eleven stations cover the latitudes between 79 °N and 78°S, including polar, mid -latitude and subtropical and tropical locations. The goal is to contribute to the assessment of the data quality of the aforementioned ENVISAT instruments, from a quasi-global perspective.
The period of intensive ground-based data collection for the benefit of the ENVISAT Validation Commissioning Phase that is dealt with in the present paper is July 15 to December 1, 2002. The FTIR network involved collected a data set corresponding to an equivalent of approximately 400 days of measurements; about three quarter of the data have already been submitted to the ENVISAT Calval database and are included in the present work.
Unfortunately, the distribution of ENVISAT data has been slow and limited. Only a limited number of coincidences has been found for making data inter-comparisons. Therefore, the conclusions drawn in this paper are very preliminary and cover only a limited set of data products from SCIAMACHY only.
Our findings up to now concerning the above mentioned target products are the following: (1) SCIAMACHY near infrared operational products (CO, CH4, N2O) have no scientific meaning yet, (2), the operational SCIAMACHY total vertical O3 column product derived in the ultraviolet window has undergone some improvements with changing versions of the processor(s) but it still underestimates the column by about 5 – 10 %, (3), the operational SCIAMACHY total vertical O3 column product derived in the visible window is unrealistically large, and (3), the operational NO2 total column product from SCIAMACHY seems to largely overestimate the real column, but very few coincidences and large dispersions of the data do inhibit any further conclusion at present.
In a next phase, the same ground-based correlative data set will be exploited to further validate the ENVISAT data as soon as more and reprocessed data will be distributed
Comparison of acoustic and traditional point count methods to assess bird diversity and composition in the Aberdare National Park, Kenya
Afromontane forests, like those in the Aberdare National Park (ANP) in Kenya, sustain unique avifaunal assemblages. There is a growing need for biodiversity inventories for Afromontane forests, especially through the utilisation of unskilled observers. Acoustic surveys are a potential aid to this, but more comparisons of this technique with that of traditional point counts are needed. We conducted a systematic survey of the ANP avifauna, assessing whether acoustic and traditional surveys resulted in different species richness scores, and whether this varied with habitat and species characteristics. We also investigated the role of habitat and elevation in driving variation in species richness. The ANP provides habitat types including scrub, moorland, montane, hagenia and bamboo forests. Overall, the surveys yielded 101 identified species. The acoustic method resulted in higher species richness scores compared to the traditional method across all habitats, and the relative performance of the two methods did not vary with habitat type or visibility. The methods detected different species, suggesting that they should be used together to maximise the range of species recorded. We found that habitat type was the primary driver of variation in species richness, with scrub and montane forest having higher species richness scores than other habitats
Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg2+ homeostasis and cytoskeletal architecture
Mg2+ plays a vital role in platelet function, but despite implications for life-threatening conditions such as stroke or myocardial infarction, the mechanisms controlling [Mg2+](i) in megakaryocytes (MKs) and platelets are largely unknown. Transient receptor potential melastatin-like 7 channel (TRPM7) is a ubiquitous, constitutively active cation channel with a cytosolic alpha-kinase domain that is critical for embryonic development and cell survival. Here we report that impaired channel function of TRPM7 in MKs causes macrothrombocytopenia in mice (Trpm7(fl/fl-Pf4Cre)) and likely in several members of a human pedigree that, in addition, suffer from atrial fibrillation. The defect in platelet biogenesis is mainly caused by cytoskeletal alterations resulting in impaired proplatelet formation by Trpm7(fl/fl-Pf4Cre) MKs, which is rescued by Mg2+ supplementation or chemical inhibition of non-muscle myosin IIA heavy chain activity. Collectively, our findings reveal that TRPM7 dysfunction may cause macrothrombocytopenia in humans and mice
Elucidating real-world vehicle emission factors from mobile measurements over a large metropolitan region: a focus on isocyanic acid, hydrogen cyanide, and black carbon
A mobile laboratory equipped with state-of-the-art gaseous and particulate
instrumentation was deployed across the Greater Toronto Area (GTA) during two
seasons. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS)
measured isocyanic acid (HNCO) and hydrogen cyanide (HCN), and a
high-sensitivity laser-induced incandescence (HS-LII) instrument measured
black carbon (BC). Results indicate that on-road vehicles are a clear source
of HNCO and HCN and that their impact is more pronounced in the winter, when
influences from biomass burning (BB) and secondary photochemistry are weakest.
Plume-based and time-based algorithms were developed to calculate
fleet-average vehicle emission factors (EFs); the algorithms were found to
yield comparable results, depending on the pollutant identity. With respect
to literature EFs for benzene, toluene, C2 benzene (sum of m-, p-, and o-xylenes and
ethylbenzene), nitrogen oxides, particle number concentration (PN), and black
carbon, the calculated EFs were characteristic of a relatively clean vehicle
fleet dominated by light-duty vehicles (LDV). Our fleet-average EF for BC (median:
25 mg kgfuel-1; interquartile range, IQR:
10–76 mg kgfuel-1) suggests that overall vehicular
emissions of BC have decreased over time. However, the distribution of EFs
indicates that a small proportion of high-emitters continue to contribute
disproportionately to total BC emissions. We report the first fleet-average
EF for HNCO (median: 2.3 mg kgfuel-1, IQR:
1.4–4.2 mg kgfuel-1) and HCN (median:
0.52 mg kgfuel-1, IQR:
0.32–0.88 mg kgfuel-1). The distribution of the estimated
EFs provides insight into the real-world variability of HNCO and HCN
emissions and constrains the wide range of literature EFs obtained from
prior dynamometer studies. The impact of vehicle emissions on urban HNCO
levels can be expected to be further enhanced if secondary HNCO formation
from vehicle exhaust is considered.</p
Impacts of 21st‐century climate change on montane habitat in the Madrean Sky Island Archipelago
Aim The Madrean Sky Island Archipelago is a North American biodiversity hotspot composed of similar to 60 isolated mountains that span the Cordilleran Gap between the Rocky Mountains and the Sierra Madre Occidental. Characterized by discrete patches of high-elevation montane habitat, these "sky islands" serve as stepping stones across a "sea" of desert scrub/grassland. Over this coming century, the region is expected to shift towards a warmer and drier climate. We used species distribution modelling to predict how the spatial distribution of montane habitat will be affected by climate change. Location Madrean Sky Island Archipelago, south-west United States and north-west Mexico (latitude, 29-34 degrees N; longitude, 107-112 degrees W). Methods To approximate the current distribution of montane habitat, we built species distribution models for five high-elevation species (Ceanothus fendleri, Pinus strobiformis, Quercus gambelii, Sciurus aberti, and Synuchus dubius). The resulting models were projected under multiple climate change scenarios-four greenhouse gas concentration trajectories (RCP 2.6, 4.5, 6.0, and 8.5) for each of three climate models (CCSM4, MPI-ESM-LR, and NorESM1-M)-to generate predicted distributions for the years 2050 and 2070. We performed chi-squared tests to detect any future changes to total montane habitat area, and Conover-Iman tests to evaluate isolation among the discrete montane habitat patches. Results While the climate models differ with respect to their predictions as to how severe the effects of future climate change will be, they all agree that by as early as year 2050, there will be significant montane habitat loss and increased montane habitat patch isolation across the Madrean Archipelago region under a worst-case climate change scenario (RCP 8.5). Main conclusions Our results suggest that under 21st-century climate change, the Madrean Sky Islands will become increasingly isolated due to montane habitat loss. This may affect their ability to serve as stepping stones and have negative implications for the region's biodiversity.University of Arizona Center for Insect ScienceOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Using FTIR measurements of stratospheric composition to identify midlatitude polar vortex intrusions over Toronto
Publisher's Version/PDFUsing 11 years of trace gas measurements made at the University of Toronto Atmospheric Observatory (43.66°N, 79.40°W) and Environment Canada’s Centre for Atmospheric Research Experiments (44.23°N, 79.78°W), along with derived meteorological products, we identify a number of polar intrusion events, which are excursions of the polar vortex or filaments from the polar vortex extending down to midlatitudes. These events are characterized by enhanced stratospheric columns (12–50 km) of hydrogen fluoride (HF), by diminished stratospheric columns of nitrous oxide (N2O), and by a scaled potential vorticity above 1.2 ×10-4s-1.The events comprise 16% of winter/spring (November to April inclusive) Fourier transform infrared (FTIR) spectroscopic measurements from January 2002 to March 2013, and we find at least two events per year. The events are corroborated by Modèle Isentrope du transport Méso-échelle de l’Ozone Stratosphérique par Advection, Modern-Era Retrospective Analysis for Research and Applications potential vorticity maps, and Global Modeling Initiative N2O maps. During polar intrusion events, the stratospheric ozone (O3) columns over Toronto are usually greater than when there is no event. Our O3 measurements agree with the Optical Spectrograph and Infrared Imaging System satellite instrument and are further verified with the Earth Probe Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument satellite observations. We find six cases out of 53 for which chemical O3 depletion within the polar vortex led to a reduction in stratospheric O3 columns over Toronto. We have thus identified a dynamical cause for most of the winter/spring variability of stratospheric trace gas columns observed at our midlatitude site. While there have been a number of prior polar intrusion studies, this is the first study to report in the context of 11 years of ground-based FTIR column measurements, providing insight into the frequency of midlatitude polar vortex intrusions and observations of upper stratospheric (25–50 km) intrusions. It is also the first to present HF measurements during multiple polar intrusions, which provided an excellent tracer for their identification.</p
- …