606 research outputs found
Pressure Raman effects and internal stress in network glasses
Raman scattering from binary GexSe1-x glasses under hydrostatic pressure
shows onset of a steady increase in the frequency of modes of corner-sharing
GeSe4 tetrahedral units when the external pressure P exceeds a threshold value
Pc. The threshold pressure Pc(x) decreases with x in the 0.15 < x < 0.20 range,
nearly vanishes in the 0.20 < x < 0.25 range, and then increases in the 0.25 <
x < 1/3 range. These Pc(x) trends closely track those in the non-reversing
enthalpy, DHnr(x), near glass transitions (Tgs), and in particular, both
DHnr(x) and Pc(x) vanish in the reversibility window (0.20 < x < 0.25). It is
suggested that Pc provides a measure of stress at the Raman active units; and
its vanishing in the reversibility window suggests that these units are part of
an isostatically rigid backbone. Isostaticity also accounts for the non-aging
behavior of glasses observed in the reversibility window
Structure, bonding and morphology of hydrothermally synthesised xonotlite
The authors have systematically investigated the role of synthesis conditions upon the structure and morphology of xonotlite. Starting with a mechanochemically prepared, semicrystalline phase with Ca/Si=1, the authors have prepared a series of xonotlite samples hydrothermally, at temperatures between 200 and 250 degrees C. Analysis in each case was by X-ray photoelectron spectroscopy, environmental scanning electron microscopy and X-ray diffraction. The authors’ use of a much lower water/solid ratio has indirectly confirmed the ‘through solution’ mechanism of xonotlite formation, where silicate dissolution is a key precursor of xonotlite formation. Concerning the role of temperature, too low a temperature (~200 degrees C) fails to yield xonotlite or leads to increased number of structural defects in the silicate chains of xonotlite and too high a temperature (>250 degrees C) leads to degradation of the xonotlite structure, through leaching of interchain calcium. Synthesis duration meanwhile leads to increased silicate polymerisation due to diminishing of the defects in the silicate chains and more perfect crystal morphologies
Electronic properties and phase transitions in low-dimensional semiconductors
We present the first review of the current state of the literature on
electronic properties and phase transitions in TlX and TlMX2 (M = Ga, In; X =
Se, S, Te) compounds. These chalcogenides belong to a family of the
low-dimensional semiconductors possessing chain or layered structure. They are
of significant interest because of their highly anisotropic properties, semi-
and photoconductivity, non-linear effects in their I-V characteristics
(including a region of negative differential resistance), switching and memory
effects, second harmonic optical generation, relaxor behavior and potential
applications for optoelectronic devices. We review the crystal structure of TlX
and TlMX2 compounds, their transport properties under ambient conditions,
experimental and theoretical studies of the electronic structure, transport
properties and semiconductor-metal phase transitions under high pressure, and
sequences of temperature-induced structural phase transitions with intermediate
incommensurate states. Electronic nature of the ferroelectric phase transitions
in the above-mentioned compounds, as well as relaxor behavior, nanodomains and
possible occurrence of quantum dots in doped and irradiated crystals is
discussed.Comment: 70 pages, 38 figure
Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4A
Modification of the gap at the Dirac point (DP) in axion antiferromagnetic topological insulator MnBi2Te4 and its electronic and spin structure have been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation at various temperatures (9-35 K), light polarizations and photon energies. We have distinguished both large (60-70 meV) and reduced (< 20 meV) gaps at the DP in the ARPES dispersions, which remain open above the Neel temperature (T-N = 24.5 K). We propose that the gap above T-N remains open due to a short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for the "large gap" sample and apparently significantly reduced effective magnetic moment for the "reduced gap" sample. These observations can be explained by a shift of the Dirac cone (DC) state localization towards the second Mn layer due to structural disturbance and surface relaxation effects, where DC state is influenced by compensated opposite magnetic moments. As we have shown by means of ab-initio calculations surface structural modification can result in a significant modulation of the DP gap.The authors acknowledge support by the Saint Petersburg State University (Grant No. 51126254), Russian Science Foundation (Grant No. 18-12-00062 in part of the photoemission measurements and Grant No. 18-12-00169 in part of the electronic band structure calculations) and by Russian Foundation of Basic Researches (Grants Nos. 18-52-06009 and 20-32-70179) and Science Development Foundation under the President of the Republic of Azerbaijan (Grant No. EI F-BGM-4-RFTF1/2017-21/04/1-M-02). A. Kimura was financially supported by KAKENHI (Grants No. 17H06138, No. 17H06152, and No. 18H03683). S.V.E. and E.V.C. acknowledge support by the Fundamental Research Program of the State Academies of Sciences (line of research III.23.2.9). The authors kindly acknowledge the HiSOR staff and A. Harasawa at ISSP for technical support and help with the experiment. The ARPES measurements at HiSOR were performed with the approval of the Proposal Assessing Committee (Proposal Numbers: 18BG027 and 19AG048). XAS and XMCD measurements were performed at BL23SU of SPring-8 (Proposal Nos. 2018A3842 and 2018B3842) under the Shared Use Program of JAEA Facilities (Proposal Nos. 2018A-E25 and 2018B-E24) with the approval of Nanotechnology Platform project supported by MEXT, Japan (Proposal Nos. A-18-AE-0020 and A-18-AE-0042). M. M. Otrokov acknowledges the support by Spanish Ministerio de Ciencia e Innovacion (Grant no. PID2019-103910GB-I00). K. Yaji was financially supported by KAKENHI (Grants No. 18K03484)
The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)
The observation of neutrinoless double-beta decay (0)
would show that lepton number is violated, reveal that neutrinos are Majorana
particles, and provide information on neutrino mass. A discovery-capable
experiment covering the inverted ordering region, with effective Majorana
neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with
excellent energy resolution and extremely low backgrounds, at the level of
0.1 count /(FWHMtyr) in the region of the signal. The
current generation Ge experiments GERDA and the MAJORANA DEMONSTRATOR
utilizing high purity Germanium detectors with an intrinsic energy resolution
of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in
the 0 signal region of all 0
experiments. Building on this success, the LEGEND collaboration has been formed
to pursue a tonne-scale Ge experiment. The collaboration aims to develop
a phased 0 experimental program with discovery potential
at a half-life approaching or at years, using existing resources as
appropriate to expedite physics results.Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017
Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO
The possibility to probe new physics scenarios of light Majorana neutrino
exchange and right-handed currents at the planned next generation neutrinoless
double beta decay experiment SuperNEMO is discussed. Its ability to study
different isotopes and track the outgoing electrons provides the means to
discriminate different underlying mechanisms for the neutrinoless double beta
decay by measuring the decay half-life and the electron angular and energy
distributions.Comment: 17 pages, 14 figures, to be published in E.P.J.
- …