100 research outputs found
Factorization and Lie point symmetries of general Lienard-type equation in the complex plane
We present a variational approach to a general Lienard-type equation in order
to linearize it and, as an example, the Van der Pol oscillator is discussed.
The new equation which is almost linear is factorized. The point symmetries of
the deformed equation are also discussed and the two-dimensional Lie algebraic
generators are obtained
Synthesis of functionally substituted benzaldehydes
© 2017, Pleiades Publishing, Ltd. A new method of synthesis of functionally substituted benzaldehydes by catalytic debromometoxylation of dibromomethylarenes with benzaldehyde dimethyl acetal has been suggested. Anhydrous zinc chloride has been used as a catalyst. Being soft Lewis acid, it formed no strong complex with aldehyde group and other functional groups. The initial acetal has been readily recovered by the treatment of benzaldehyde isolated from the reaction mixture with trimethyl orthoformate
GZK Photons Above 10 EeV
We calculate the flux of "GZK-photons", namely the flux of photons produced
by extragalactic nucleons through the resonant photoproduction of pions, the so
called GZK effect. This flux depends on the UHECR spectrum on Earth, of the
spectrum of nucleons emitted at the sources, which we characterize by its slope
and maximum energy, on the distribution of sources and on the intervening
cosmological backgrounds, in particular the magnetic field and radio
backgrounds. For the first time we calculate the GZK photons produced by
nuclei. We calculate the possible range of the GZK photon fraction of the total
UHECR flux for the AGASA and the HiRes spectra. We find that for nucleons
produced at the sources it could be as large as a few % and as low as 10^{-4}
above 10 EeV. For nuclei produced at the sources the maximum photon fraction is
a factor of 2 to 3 times smaller above 10 EeV but the minimum could be much
smaller than for nucleons. We also comment on cosmogenic neutrino fluxes.Comment: 20 pages, 9 figures (21 panels), iopart.cls and iopart12.clo needed
to typese
Composition of UHECR and the Pierre Auger Observatory Spectrum
We fit the recently published Pierre Auger ultra-high energy cosmic ray
spectrum assuming that either nucleons or nuclei are emitted at the sources. We
consider the simplified cases of pure proton, or pure oxygen, or pure iron
injection. We perform an exhaustive scan in the source evolution factor, the
spectral index, the maximum energy of the source spectrum Z E_{max}, and the
minimum distance to the sources. We show that the Pierre Auger spectrum agrees
with any of the source compositions we assumed. For iron, in particular, there
are two distinct solutions with high and low E_{max} (e.g. 6.4 10^{20} eV and 2
10^{19} eV) respectively which could be distinguished by either a large
fraction or the near absence of proton primaries at the highest energies. We
raise the possibility that an iron dominated injected flux may be in line with
the latest composition measurement from the Pierre Auger Observatory where a
hint of heavy element dominance is seen.Comment: 19 pages, 6 figures (33 panels)- Uses iopart.cls and iopart12.clo- In
version 2: addition of a few sentences and two reference
Measuring diffuse neutrino fluxes with IceCube
In this paper the sensitivity of a future kilometer-sized neutrino detector
to detect and measure the diffuse flux of high energy neutrinos is evaluated.
Event rates in established detection channels, such as muon events from charged
current muon neutrino interactions or cascade events from electron neutrino and
tau neutrino interactions, are calculated using a detailed Monte Carlo
simulation. Neutrino fluxes as expected from prompt charm decay in the
atmosphere or from astrophysical sources such as Active Galactic Nuclei are
modeled assuming power laws. The ability to measure the normalization and slope
of these spectra is then analyzed.
It is found that the cascade channel generally has a high sensitivity for the
detection and characterization of the diffuse flux, when compared to what is
expected for the upgoing- and downgoing-muon channels. A flux at the level of
the Waxman-Bahcall upper bound should be detectable in all channels separately
while a combination of the information of the different channels will allow
detection of a flux more than one order of magnitude lower. Neutrinos from the
prompt decay of charmed mesons in the atmosphere should be detectable in future
measurements for all but the lowest predictions.Comment: 12 pages, 3 figure
Constrained Simulations of the Magnetic Field in the Local Universe and the Propagation of UHECRs
We use simulations of LSS formation to study the build-up of magnetic fields
(MFs) in the ICM. Our basic assumption is that cosmological MFs grow in a MHD
amplification process driven by structure formation out of a seed MF present at
high z. Our LCDM initial conditions for the density fluctuations have been
statistically constrained by the observed galaxies, based on the IRAS 1.2-Jy
all-sky redshift survey. As a result, prominent galaxy clusters in our
simulation coincide closely with their real counterparts. We find excellent
agreement between RMs of our simulated clusters and observational data. The
improved resolution compared to previous work also allows us to study the MF in
large-scale filaments, sheets and voids. By tracing the propagation of UHE
protons in the simulated MF we construct full-sky maps of expected deflection
angles of protons with arrival energies E=1e20eV and 4e19eV, respectively.
Strong deflections are only produced if UHE protons cross clusters, however
covering only a small area on the sky. Multiple crossings of sheets and
filaments over larger distances may give rise to noticeable deflections,
depending on the model adopted for the magnetic seed field. Based on our
results we argue that over a large fraction of the sky the deflections are
likely to remain smaller than the present experimental angular sensitivity.
Therefore, we conclude that forthcoming air shower experiments should be able
to locate sources of UHE protons and shed more light on the nature of
cosmological MFs.Comment: 3revised version, JCAP, accepte
Group Analysis of Variable Coefficient Diffusion-Convection Equations. I. Enhanced Group Classification
We discuss the classical statement of group classification problem and some
its extensions in the general case. After that, we carry out the complete
extended group classification for a class of (1+1)-dimensional nonlinear
diffusion--convection equations with coefficients depending on the space
variable. At first, we construct the usual equivalence group and the extended
one including transformations which are nonlocal with respect to arbitrary
elements. The extended equivalence group has interesting structure since it
contains a non-trivial subgroup of non-local gauge equivalence transformations.
The complete group classification of the class under consideration is carried
out with respect to the extended equivalence group and with respect to the set
of all point transformations. Usage of extended equivalence and correct choice
of gauges of arbitrary elements play the major role for simple and clear
formulation of the final results. The set of admissible transformations of this
class is preliminary investigated.Comment: 25 page
Implications of the cosmic ray spectrum for the mass composition at the highest energies
The significant attenuation of the cosmic-ray flux above eV
suggests that the observed high-energy spectrum is shaped by the so-called GZK
effect. This interaction of ultra-high-energy cosmic rays (UHECRs) with the
ambient radiation fields also affects their composition. We review the effect
of photo-dissociation interactions on different nuclear species and analyze the
phenomenology of secondary proton production as a function of energy. We show
that, by itself, the UHECR spectrum does not constrain the cosmic-ray
composition at their extragalactic sources. While the propagated composition
(i.e., as observed at Earth) cannot contain significant amounts of intermediate
mass nuclei (say between He and Si), whatever the source composition, and while
it is vastly proton-dominated when protons are able to reach energies above
eV at the source, we show that the propagated composition can be
dominated by Fe and sub-Fe nuclei at the highest energies, either if the
sources are very strongly enriched in Fe nuclei (a rather improbable
situation), or if the accelerated protons have a maximum energy of a few
eV at the sources. We also show that in the latter cases, the
expected flux above eV is very much reduced compared to the case
when protons dominate in this energy range, both at the sources and at Earth.Comment: 16 pages, 7 figure
Search for Dark Matter Annihilation in the Galactic Center with IceCube-79
The Milky Way is expected to be embedded in a halo of dark matter particles,
with the highest density in the central region, and decreasing density with the
halo-centric radius. Dark matter might be indirectly detectable at Earth
through a flux of stable particles generated in dark matter annihilations and
peaked in the direction of the Galactic Center. We present a search for an
excess flux of muon (anti-) neutrinos from dark matter annihilation in the
Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at
the South Pole. There, the Galactic Center is always seen above the horizon.
Thus, new and dedicated veto techniques against atmospheric muons are required
to make the southern hemisphere accessible for IceCube. We used 319.7 live-days
of data from IceCube operating in its 79-string configuration during 2010 and
2011. No neutrino excess was found and the final result is compatible with the
background. We present upper limits on the self-annihilation cross-section,
\left, for WIMP masses ranging from 30 GeV up to
10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo
profiles, reaching down to cm s, and
cm s for the
channel, respectively.Comment: 14 pages, 9 figures, Submitted to EPJ-C, added references, extended
limit overvie
An improved method for measuring muon energy using the truncated mean of dE/dx
The measurement of muon energy is critical for many analyses in large
Cherenkov detectors, particularly those that involve separating
extraterrestrial neutrinos from the atmospheric neutrino background. Muon
energy has traditionally been determined by measuring the specific energy loss
(dE/dx) along the muon's path and relating the dE/dx to the muon energy.
Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in
dE/dx values is quite large, leading to a typical energy resolution of 0.29 in
log10(E_mu) for a muon observed over a 1 km path length in the IceCube
detector. In this paper, we present an improved method that uses a truncated
mean and other techniques to determine the muon energy. The muon track is
divided into separate segments with individual dE/dx values. The elimination of
segments with the highest dE/dx results in an overall dE/dx that is more
closely correlated to the muon energy. This method results in an energy
resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This
technique is applicable to any large water or ice detector and potentially to
large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure
- …