112 research outputs found
Recommended from our members
Stochastic Model of Tsc1 Lesions in Mouse Brain
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder due to mutations in either TSC1 or TSC2 that affects many organs with hamartomas and tumors. TSC-associated brain lesions include subependymal nodules, subependymal giant cell astrocytomas and tubers. Neurologic manifestations in TSC comprise a high frequency of mental retardation and developmental disorders including autism, as well as epilepsy. Here, we describe a new mouse model of TSC brain lesions in which complete loss of Tsc1 is achieved in multiple brain cell types in a stochastic pattern. Injection of an adeno-associated virus vector encoding Cre recombinase into the cerebral ventricles of mice homozygous for a Tsc1 conditional allele on the day of birth led to reduced survival, and pathologic findings of enlarged neurons, cortical heterotopias, subependymal nodules, and hydrocephalus. The severity of clinical and pathologic findings as well as survival was shown to be dependent upon the dose and serotype of Cre virus injected. Although several other models of TSC brain disease exist, this model is unique in that the pathology reflects a variety of TSC-associated lesions involving different numbers and types of cells. This model provides a valuable and unique addition for therapeutic assessment
Racism, anti-racist practice and social work: articulating the teaching and learning experiences of Black social workers
In the mid 1990s a Black practice teacher programme was established in Manchester and Merseyside with the primary aim to increase the number of Black practice teachers in social work organisations, and in turn provide a supportive and encouraging learning environment for Black student social workers whilst on placement. In the north‐west of England research has been undertaken, to establish the quality of the practice teaching and student learning taking place with Black practice teachers and students. This paper is an exploration of the ideas generated within the placement process that particularly focused on the discourse of racism and ant‐racist practice. Black students and practice teachers explain their understanding of racism and anti‐racist practice within social work. From the research, the paper will critique some of the ideas concerning anti‐racism. In particular, it will question whether anti‐racist social work practice needs to be re‐evaluated in the light of a context with new migrants, asylum seekers and refugees. It will concluded, by arguing that whilst the terms anti‐racism, Black and Minority Ethnic have resonance as a form of political strategic essentialism, it is important to develop more positive representations in the future
Experimental Study of the Shortest Reset Word of Random Automata
In this paper we describe an approach to finding the shortest reset word of a
finite synchronizing automaton by using a SAT solver. We use this approach to
perform an experimental study of the length of the shortest reset word of a
finite synchronizing automaton. The largest automata we considered had 100
states. The results of the experiments allow us to formulate a hypothesis that
the length of the shortest reset word of a random finite automaton with
states and 2 input letters with high probability is sublinear with respect to
and can be estimated as $1.95 n^{0.55}.
Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data.
BACKGROUND: Parkinson's disease has been reported in a small number of patients with chromosome 22q11.2 deletion syndrome. In this study, we screened a series of large, independent Parkinson's disease case-control studies for deletions at 22q11.2. METHODS: We used data on deletions spanning the 22q11.2 locus from four independent case-control Parkinson's disease studies (UK Wellcome Trust Case Control Consortium 2, Dutch Parkinson's Disease Genetics Consortium, US National Institute on Aging, and International Parkinson's Disease Genomics Consortium studies), which were independent of the original reports of chromosome 22q11.2 deletion syndrome. We did case-control association analysis to compare the proportion of 22q11.2 deletions found, using the Fisher's exact test for the independent case-control studies and the Mantel-Haenszel test for the meta-analyses. We retrieved clinical details of patients with Parkinson's disease who had 22q11.2 deletions from the medical records of these patients. FINDINGS: We included array-based copy number variation data from 9387 patients with Parkinson's disease and 13 863 controls. Eight patients with Parkinson's disease and none of the controls had 22q11.2 deletions (p=0·00082). In the 8451 patients for whom age at onset data were available, deletions at 22q11.2 were associated with Parkinson's disease age at onset (Mann-Whitney U test p=0·001). Age at onset of Parkinson's disease was lower in patients carrying a 22q11.2 deletion (median 37 years, 95% CI 32·0-55·5; mean 42·1 years [SD 11·9]) than in those who did not carry a deletion (median 61 years, 95% CI 60·5-61·0; mean 60·3 years [SD 12·8]). A 22q11.2 deletion was present in more patients with early-onset (p<0·0001) and late-onset Parkinson's disease (p=0·016) than in controls, and in more patients with early-onset than late-onset Parkinson's disease (p=0·005). INTERPRETATION: Clinicians should be alert to the possibility of 22q11.2 deletions in patients with Parkinson's disease who have early presentation or features associated with the chromosome 22q11.2 deletion syndrome, or both. FUNDING: UK Medical Research Council, UK Wellcome Trust, Parkinson's UK, Patrick Berthoud Trust, National Institutes of Health, "Investissements d'Avenir" ANR-10-IAIHU-06, Dutch Parkinson Foundation (Parkinson Vereniging), Neuroscience Campus Amsterdam, National Institute for Health Research, National Institute on Aging, National Institutes of Health.UK Medical Research Council, UK Wellcome Trust, Parkinson's UK, Patrick Berthoud Trust, National Institutes of Health, “Investissements d'Avenir” ANR-10-IAIHU-06, Dutch Parkinson Foundation (Parkinson Vereniging), Neuroscience Campus Amsterdam, National Institute for Health Research, National Institute on Aging, National Institutes of Health.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/S1474-4422(16)00071-
Nonmotor Symptoms in LRRK2 G2019S Associated Parkinson's Disease
BACKGROUND:
Idiopathic Parkinson's disease (IPD) and LRRK2-associated PD (LRRK2-PD) might be expected to differ clinically since the neuropathological substrate of LRRK2-PD is heterogeneous. The range and severity of extra-nigral nonmotor features associated with LRRK2 mutations is also not well-defined.
OBJECTIVE:
To evaluate the prevalence and time of onset of nonmotor symptoms (NMS) in LRRK2-PD patients.
METHODS:
The presence of hyposmia and of neuropsychiatric, dysautonomic and sleep disturbances was assessed in 33 LRRK2-G2019S-PD patients by standardized questionnaires and validated scales. Thirty-three IPD patients, matched for age, gender, duration of parkinsonism and disease severity and 33 healthy subjects were also evaluated.
RESULTS:
University of Pennsylvania Smell Identification Test (UPSIT) scores in LRRK2-G2019S-PD were higher than those in IPD (23.5±6.8 vs 18.4±6.0; p = 0.002), and hyposmia was less frequent in G2019S carriers than in IPD (39.4% vs 75.8%; p = 0.01). UPSIT scores were significantly higher in females than in males in LRRK2-PD patients (26.9±4.7 vs 19.4±6.8; p<0.01). The frequency of sleep and neuropsychiatric disturbances and of dysautonomic symptoms in LRRK2-G2019S-PD was not significantly different from that in IPD. Hyposmia, depression, constipation and excessive daytime sleepiness, were reported to occur before the onset of classical motor symptoms in more than 40% of LRRK2-PD patients in whom these symptoms were present at the time of examination.
CONCLUSION:
Neuropsychiatric, dysautonomic and sleep disturbances occur as frequently in patients with LRRK2-G2019S-PD as in IPD but smell loss was less frequent in LRRK2-PD. Like in IPD, disturbances such as hyposmia, depression, constipation and excessive daytime sleepiness may antedate the onset of classical motor symptoms in LRRK2-G2019S-PD
NA49 Results on Single Particle and Correlation Measurements in Central Pb+Pb Collisions
Single-particle spectra and two-particle correlation functions measured by the NA49 collaboration in central Pb+Pb collisions at 158 GeV/nucleon are presented. These measurements are used to study the kinetic and chemical freeze-out conditions in heavy ion collisions. We conclude that large baryon stopping, high baryon density and strong transverse radial flow are achieved in central Pb+Pb collisions at the SPS.Single-particle spectra and two-particle correlation functions measured by the NA49 collaboration in central Pb+Pb collisions at 158 GeV/nucleon are presented. These measurements are used to study the kinetic and chemical freeze-out conditions in heavy ion collisions. We conclude that large baryon stopping, high baryon density and strong transverse radial flow are achieved in central Pb+Pb collisions at the SPS
Relativistic transport theory of N, \Delta and N^{*}(1440) interacting through , and mesons
A self-consistent relativistic integral-differential equation of the
Boltzmann-Uehling-Uhlenbeck-type for the (1440) resonance is developed
based on an effective Lagrangian of baryons interacting through mesons. The
closed time-path Green's function technique and semi-classical, quasi-particle
and Born approximations are employed in the derivation. The non-equilibrium
RBUU-type equation for the (1440) is consistent with that of nucleon's
and delta's which we derived before. Thus, we obtain a set of coupled equations
for the , and (1440) distribution functions.
All the (1440)-relevant in-medium two-body scattering cross sections
within the , and (1440) system are derived from the same
effective Lagrangian in addition to the mean field and presented analytically,
which can be directly used in the study of relativistic heavy-ion collisions.
The theoretical prediction of the free cross section is
in good agreement with the experimental data. We calculate the in-medium , and cross
sections in cold nuclear matter up to twice the nuclear matter density. The
influence of different choices of the coupling strengths, which
can not be obtained through fitting certain experimental data, are discussed.
The results show that the density dependence of predicted in-medium cross
sections are sensitive to the coupling strengths used. An evident
density dependence will appear when a large scalar coupling strength of
is assumed.Comment: 64 pages, Latex, 13 PostScript figures include
Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies
Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)
Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information
Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/
Analysis of DNM3 and VAMP4 as genetic modifiers of LRRK2 Parkinson's disease.
The LRRK2 gene has rare (p.G2019S) and common risk variants for Parkinson's disease (PD). DNM3 has previously been reported as a genetic modifier of the age at onset in PD patients carrying the LRRK2 p.G2019S mutation. We analyzed this effect in a new cohort of LRRK2 p.G2019S heterozygotes (n = 724) and meta-analyzed our data with previously published data (n = 754). VAMP4 is in close proximity to DNM3, and was associated with PD in a recent study, so it is possible that variants in this gene may be important. We also analyzed the effect of VAMP4 rs11578699 on LRRK2 penetrance. Our analysis of DNM3 in previously unpublished data does not show an effect on age at onset in LRRK2 p.G2019S carriers; however, the inter-study heterogeneity may indicate ethnic or population-specific effects of DNM3. There was no evidence for linkage disequilibrium between DNM3 and VAMP4. Analysis of sporadic patients stratified by the risk variant LRRK2 rs10878226 indicates a possible interaction between common variation in LRRK2 and VAMP4 in disease risk
- …