527 research outputs found

    Equilibrium Disk-Bulge-Halo Models for the Milky Way and Andromeda Galaxies

    Full text link
    We describe a new set of self-consistent, equilibrium disk galaxy models that incorporate an exponential disk, a Hernquist model bulge, an NFW halo and a central supermassive black hole. The models are derived from explicit distribution functions for each component and the large number of parameters permit detailed modeling of actual galaxies. We present techniques that use structural and kinematic data such as radial surface brightness profiles, rotation curves and bulge velocity dispersion profiles to find the best-fit models for the Milky Way and M31. Through N-body realizations of these models we explore their stability against the formation of bars. The models permit the study of a wide range of dynamical phenomenon with a high degree of realism.Comment: 58 pages, 20 figures, submitted to the Astrophysical Journa

    Sterile Neutrinos as Dark Matter

    Get PDF
    The simplest model that can accomodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed or sterile neutrinos. We reexamine this model and find that the sterile neutrinos can be either hot, warm, or cold dark matter. Since their only direct coupling is to left-handed or active neutrinos, the most efficient production mechanism is via neutrino oscillations. If the production rate is always less than the expansion rate, then these neutrinos will never be in thermal equilibrium. However, enough of them may be produced so that they provide the missing mass necessary for closure. We consider a single generation of neutrino fields (νL,νR)\left (\nu_L,\,\nu_R\right ) with a Dirac mass, μ\mu, and a Majorana mass for the right-handed components only, MM. For MμM\gg \mu we show that the number density of sterile neutrinos is proportional to μ2/M\mu^2/M so that the energy density today is {\it independent of} MM. However MM is crucial in determining the large scale structure of the Universe. In particular, M0.11.0 keVM\simeq 0.1-1.0 {\rm ~keV} leads to warm dark matter and a structure formation scenario that may have some advantages over both the standard hot and cold dark matter scenarios.Comment: 10 pages (1 figure available upon request) phyzzx, FERMILAB-Pub-93/057-

    The dynamics of curved gravitating walls

    Get PDF
    We examine the dynamics of a self-gravitating domain wall using the λΦ4\lambda \Phi^4 model as a specific example. We find that the Nambu motion of the wall is quite generic and dominates the wall motion even in the presence of gravity. We calculate the corrections to this leading order motion, and estimate the effect of the inclusion of gravity on the dynamics of the wall. We then treat the case of a spherical gravitating thick wall as a particular example, solving the field equations and calculating the corrections to the Nambu motion analytically for this specific case. We find that the presence of gravity retards collapse in this case.Comment: 19 pages revtex, 3 figures, references added, equations correcte

    Chiral fermion mass and dispersion relations at finite temperature in the presence of hypermagnetic fields

    Full text link
    We study the modifications to the real part of the thermal self-energy for chiral fermions in the presence of a constant external hypermagnetic field. We compute the dispersion relation for fermions occupying a given Landau level to first order in g'^2, g^2 and g_phi^2 and to all orders in g'B, where g' and g are the U(1)_Y and SU(2)_L couplings of the standard model, respectively, g_phi is the fermion Yukawa coupling, and B is the hypermagnetic field strength. We show that in the limit where the temperature is large compared to sqrt{g'B}, left- and right-handed modes acquire finite and different B-dependent masses due to the chiral nature of their coupling with the external field. Given the current bounds on the strength of primordial magnetic fields, we argue that the above is the relevant scenario to study the effects of magnetic fields on the propagation of fermions prior and during the electroweak phase transition.Comment: 11 pages 4 figures, published versio

    EXCITATION of COUPLED STELLAR MOTIONS in the GALACTIC DISK by ORBITING SATELLITES

    Get PDF
    We use a set of high-resolution N-body simulations of the Galactic disk to study its interactions with the population of cosmologically predicted satellites. One simulation illustrates that multiple passages of massive satellites with different velocities through the disk generate a wobble, which has the appearance of rings in face-on projections of the stellar disk. They also produce flares in the outer disk parts and gradually heat the disk through bending waves. A different numerical experiment shows that an individual satellite as massive as the Sagittarius dwarf galaxy passing through the disk will drive coupled horizontal and vertical oscillations of stars in underdense regions with small associated heating. This experiment shows that vertical excursions of stars in these low-density regions can exceed 1 kpc in the Solar neighborhood, resembling the recently locally detected coherent vertical oscillations. They can also induce non-zero vertical streaming motions as large as 10-20 km s-1, which is consistent with recent observations in the Galactic disk. This phenomenon appears as a local ring with modest associated disk heating. © 2016. The American Astronomical Society. All rights reserved

    Dynamics in the satellite system of Triangulum: Is AndXXII a dwarf satellite of M33?

    Full text link
    We present results from a spectroscopic survey of the dwarf spheroidal And XXII and the two extended clusters EC1 and EC2. These three objects are candidate satellites of the Triangulum galaxy, M33, which itself is likely a satellite of M31. We use the DEep Imaging Multi-Object Spectrograph mounted on the Keck-II telescope to derive radial velocities for candidate member stars of these objects and thereby identify the stars that are most likely actual members. Eleven most probable stellar members (of 13 candidates) are found for AndXXII. We obtain an upper limit of sigma_v < 6.0 km s-1 for the velocity dispersion of AndXXII, [Fe/H] ~ -1.6 for its metallicity, and 255pc for the Plummer radius of its projected density profile. We construct a colour magnitude diagram for AndXXII and identify both the red giant branch and the horizontal branch. The position of the latter is used to derive a heliocentric distance to And XXII of 853 pm 26 kpc. The combination of the radial velocity, distance, and angular position of AndXXII indicates that it is a strong candidate for being the first known satellite of M33 and one of the very few examples of a galactic satellite of a satellite. N-body simulations imply that this conclusion is unchanged even if M31 and M33 had a strong encounter in the past few Gyr. We test the hypothesis that the extended clusters highlight tidally stripped galaxies by searching for an excess cloud of halo-like stars in their vicinity. We find such a cloud for the case of EC1 but not EC2. The three objects imply a dynamical mass for M33 that is consistent with previous estimates.Comment: 14 pages, 14 figures, revised for MNRAS publicatio

    Adaptive filtering techniques for gravitational wave interferometric data: Removing long-term sinusoidal disturbances and oscillatory transients

    Get PDF
    It is known by the experience gained from the gravitational wave detector proto-types that the interferometric output signal will be corrupted by a significant amount of non-Gaussian noise, large part of it being essentially composed of long-term sinusoids with slowly varying envelope (such as violin resonances in the suspensions, or main power harmonics) and short-term ringdown noise (which may emanate from servo control systems, electronics in a non-linear state, etc.). Since non-Gaussian noise components make the detection and estimation of the gravitational wave signature more difficult, a denoising algorithm based on adaptive filtering techniques (LMS methods) is proposed to separate and extract them from the stationary and Gaussian background noise. The strength of the method is that it does not require any precise model on the observed data: the signals are distinguished on the basis of their autocorrelation time. We believe that the robustness and simplicity of this method make it useful for data preparation and for the understanding of the first interferometric data. We present the detailed structure of the algorithm and its application to both simulated data and real data from the LIGO 40meter proto-type.Comment: 16 pages, 9 figures, submitted to Phys. Rev.

    Pseudo-Stable Bubbles

    Get PDF
    The evolution of spherically symmetric unstable scalar field configurations (``bubbles'') is examined for both symmetric (SDWP) and asymmetric (ADWP) double-well potentials. Bubbles with initial static energies E_0\la E_{{\rm crit}}, where EcritE_{{\rm crit}} is some critical value, shrink in a time scale determined by their linear dimension, or ``radius''. Bubbles with E_0\ga E_{{\rm crit}} evolve into time-dependent, localized configurations which are {\it very} long-lived compared to characteristic time-scales in the models examined. The stability of these configurations is investigated and possible applications are briefly discussed.tic time-scales in the models examined. The stability of these configurations is investigated and possible applications are briefly discussed.Comment: 10 pages, LaTeX (uses revtex 3.0), 4 figures (postscript files of figs.1 and 2 appended starting on line 497), report DART-HEP-93/0

    The Merger Rate of Extremely Low Mass White Dwarf Binaries: Links to the Formation of AM CVn Stars and Underluminous Supernovae

    Full text link
    We study a complete, colour-selected sample of double-degenerate binary systems containing extremely low mass (ELM) <0.25 Msol white dwarfs (WDs). We show, for the first time, that Milky Way disk ELM WDs have a merger rate of approximately 4 x 10^(-5)/yr due to gravitational wave radiation. The merger end-product depends on the mass ratio of the binary. The ELM WD systems that undergo stable mass transfer can account for >3% of AM CVn stars. More importantly, the ELM WD systems that may detonate merge at a rate comparable to the estimated rate of underluminous SNe, rare explosions estimated to produce only ~0.2 Msol worth of ejecta. At least 25% of our ELM WD sample belong to the old thick disk and halo components of the Milky Way. Thus, if merging ELM WD systems are the progenitors of underluminous SNe, transient surveys must find them in both elliptical and spiral galaxies.Comment: MNRAS Letters, in pres
    corecore