We describe a new set of self-consistent, equilibrium disk galaxy models that
incorporate an exponential disk, a Hernquist model bulge, an NFW halo and a
central supermassive black hole. The models are derived from explicit
distribution functions for each component and the large number of parameters
permit detailed modeling of actual galaxies. We present techniques that use
structural and kinematic data such as radial surface brightness profiles,
rotation curves and bulge velocity dispersion profiles to find the best-fit
models for the Milky Way and M31. Through N-body realizations of these models
we explore their stability against the formation of bars. The models permit the
study of a wide range of dynamical phenomenon with a high degree of realism.Comment: 58 pages, 20 figures, submitted to the Astrophysical Journa