75 research outputs found

    Risk Factors for CIED Infection After Secondary Procedures

    Get PDF
    OBJECTIVES This study aimed to identify risk factors for infection after secondary cardiac implantable electronic device (CIED) procedures. BACKGROUND Risk factors for CIED infection are not well defined and techniques to minimize infection lack supportive evidence. WRAP-IT (World-wide Randomized Antibiotic Envelope Infection Prevention trial), a large study that assessed the safety and efficacy of an antibacterial envelope for CIED infection reduction, offers insight into procedural details and infection prevention strategies. METHODS This analysis included 2,803 control patients from the WRAP-IT trial who received standard preoperative antibiotics but not the envelope (44 patients with major infections through all follow-up). A multivariate least absolute shrinkage and selection operator machine learning model, controlling for patient characteristics and procedural variables, was used for risk factor selection and identification. Risk factors consistently retaining predictive value in the model (appeared >10 times) across 100 iterations of imputed data were deemed significant. RESULTS Of the 81 variables screened, 17 were identified as risk factors with 6 being patient/device-related (nonmodifiable) and 11 begin procedure-related (potentially modifiable). Patient/device-related factors included higher number of previous CIED procedures, history of atrial arrhythmia, geography (outside North America and Europe), device type, and lower body mass index. Procedural factors associated with increased risk included longer procedure time, implant location (non-left pectoral subcutaneous), perioperative glycopeptide antibiotic versus nonglycopeptide, anticoagulant, and/or antiplatelet use, and capsulectomy. Factors associated with decreased risk of infection included chlorhexidine skin preparation and antibiotic pocket wash. CONCLUSIONS In WRAP-IT patients, we observed that several procedural risk factors correlated with infection risk. These results can help guide infection prevention strategies to minimize infections associated with secondary CIED procedures. (J Am Coll Cardiol EP 2022;8:101-111) (c) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    The fitness consequences of inbreeding in natural populations and their implications for species conservation – a systematic map

    Get PDF
    Background: Threatened species often have small and isolated populations where mating among relatives can result in inbreeding depression increasing extinction risk. Effective management is hampered by a lack of syntheses summarising the magnitude of, and variation in inbreeding depression. Here we describe the nature and scope of the literature examining phenotypic/fitness consequences of inbreeding, to provide a foundation for future syntheses and management. Methods: We searched the literature for articles documenting the impact of inbreeding in natural populations. Article titles, abstracts and full-texts were assessed against a priori defined criteria, and information relating to study design, quality and other factors that may influence inbreeding responses (e.g. population size) was extracted from relevant articles. Results: The searches identified 11457 articles, of which 614 were assessed as relevant and included in the systematic map (corresponding to 703 distinct studies). Most studies (663) assessed within-population inbreeding resulting from self-fertilisation or consanguineous pairings, while 118 studies assessed among-population inbreeding due to drift load. Plants were the most studied taxon (469 studies) followed by insects (52 studies) and birds (43 studies). Most studies investigated the effects of inbreeding on components of fitness (e.g. survival or fecundity; 648 studies) but measurements were typically under laboratory/greenhouse conditions (486 studies). Observations were also often restricted to the first inbred generation (607 studies) and studies frequently lacked contextual information (e.g. population size). Conclusions: Our systematic map describes the scope and quality of the evidence describing the phenotypic consequences of inbreeding. The map reveals substantial evidence relating to inbreeding responses exists, but highlights information is still limited for some aspects, including the effects of multiple generations of inbreeding. The systematic map allowed us to define several conservation-relevant questions, where sufficient data exists to support systematic reviews, e.g. How do inbreeding responses vary with population size? However, we found that such syntheses are likely to be constrained by incomplete reporting of critical contextual information. Our systematic map employed the same rigorous literature assessment methods as systematic review, including a novel survey of study quality and thus provides a robust foundation to guide future research and syntheses seeking to inform conservation decision-making

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base

    Fermi LAT Observations of LS I +61 303: First detection of an orbital modulation in GeV Gamma Rays

    Full text link
    This Letter presents the first results from the observations of LSI +61 303 using Large Area Telescope data from the Fermi Gamma-Ray Space Telescope between 2008 August and 2009 March. Our results indicate variability that is consistent with the binary period, with the emission being modulated at 26.6 +/- 0.5 days. This constitutes the first detection of orbital periodicity in high-energy gamma rays (20 MeV-100 GeV, HE). The light curve is characterized by a broad peak after periastron, as well as a smaller peak just before apastron. The spectrum is best represented by a power law with an exponential cutoff, yielding an overall flux above 100 MeV of 0.82 +/- 0.03(stat) +/- 0.07(syst) 10^{-6} ph cm^{-2} s^{-1}, with a cutoff at 6.3 +/- 1.1(stat) +/- 0.4(syst) GeV and photon index Gamma = 2.21 +/- 0.04(stat) +/- 0.06(syst). There is no significant spectral change with orbital phase. The phase of maximum emission, close to periastron, hints at inverse Compton scattering as the main radiation mechanism. However, previous very high-energy gamma ray (>100 GeV, VHE) observations by MAGIC and VERITAS show peak emission close to apastron. This and the energy cutoff seen with Fermi suggest the link between HE and VHE gamma rays is nontrivial.Comment: 7 pages, 5 figures, accepted for publication in ApJ Letters 21 July 200

    Observations of Milky Way Dwarf Spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models

    Full text link
    We report on the observations of 14 dwarf spheroidal galaxies with the Fermi Gamma-Ray Space Telescope taken during the first 11 months of survey mode operations. The Fermi telescope provides a new opportunity to test particle dark matter models through the expected gamma-ray emission produced by pair annihilation of weakly interacting massive particles (WIMPs). Local Group dwarf spheroidal galaxies, the largest galactic substructures predicted by the cold dark matter scenario, are attractive targets for such indirect searches for dark matter because they are nearby and among the most extreme dark matter dominated environments. No significant gamma-ray emission was detected above 100 MeV from the candidate dwarf galaxies. We determine upper limits to the gamma-ray flux assuming both power-law spectra and representative spectra from WIMP annihilation. The resulting integral flux above 100 MeV is constrained to be at a level below around 10^-9 photons cm^-2 s^-1. Using recent stellar kinematic data, the gamma-ray flux limits are combined with improved determinations of the dark matter density profile in 8 of the 14 candidate dwarfs to place limits on the pair annihilation cross-section of WIMPs in several widely studied extensions of the standard model. With the present data, we are able to rule out large parts of the parameter space where the thermal relic density is below the observed cosmological dark matter density and WIMPs (neutralinos here) are dominantly produced non-thermally, e.g. in models where supersymmetry breaking occurs via anomaly mediation. The gamma-ray limits presented here also constrain some WIMP models proposed to explain the Fermi and PAMELA e^+e^- data, including low-mass wino-like neutralinos and models with TeV masses pair-annihilating into muon-antimuon pairs. (Abridged)Comment: 25 pages, 4 figures, accepted to ApJ, Corresponding authors: J. Cohen-Tanugi, C. Farnier, T.E. Jeltema, E. Nuss, and S. Profum

    A gene-based SNP resource and linkage map for the copepod Tigriopus californicus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As yet, few genomic resources have been developed in crustaceans. This lack is particularly evident in Copepoda, given the extraordinary numerical abundance, and taxonomic and ecological diversity of this group. <it>Tigriopus californicus </it>is ideally suited to serve as a genetic model copepod and has been the subject of extensive work in environmental stress and reproductive isolation. Accordingly, we set out to develop a broadly-useful panel of genetic markers and to construct a linkage map dense enough for quantitative trait locus detection in an interval mapping framework for <it>T. californicus--</it>a first for copepods.</p> <p>Results</p> <p>One hundred and ninety Single Nucleotide Polymorphisms (SNPs) were used to genotype our mapping population of 250 F<sub>2 </sub>larvae. We were able to construct a linkage map with an average intermarker distance of 1.8 cM, and a maximum intermarker distance of 10.3 cM. All markers were assembled into linkage groups, and the 12 linkage groups corresponded to the 12 known chromosomes of <it>T. californicus</it>. We estimate a total genome size of 401.0 cM, and a total coverage of 73.7%. Seventy five percent of the mapped markers were detected in 9 additional populations of <it>T. californicus</it>. Of available model arthropod genomes, we were able to show more colocalized pairs of homologues between <it>T. californicus </it>and the honeybee <it>Apis mellifera</it>, than expected by chance, suggesting preserved macrosynteny between Hymenoptera and Copepoda.</p> <p>Conclusions</p> <p>Our study provides an abundance of linked markers spanning all chromosomes. Many of these markers are also found in multiple populations of <it>T. californicus</it>, and in two other species in the genus. The genomic resource we have developed will enable mapping throughout the geographical range of this species and in closely related species. This linkage map will facilitate genome sequencing, mapping and assembly in an ecologically and taxonomically interesting group for which genomic resources are currently under development.</p

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Bias and Evolution of the Mutationally Accessible Phenotypic Space in a Developmental System

    Get PDF
    Genetic and developmental architecture may bias the mutationally available phenotypic spectrum. Although such asymmetries in the introduction of variation may influence possible evolutionary trajectories, we lack quantitative characterization of biases in mutationally inducible phenotypic variation, their genotype-dependence, and their underlying molecular and developmental causes. Here we quantify the mutationally accessible phenotypic spectrum of the vulval developmental system using mutation accumulation (MA) lines derived from four wild isolates of the nematodes Caenorhabditis elegans and C. briggsae. The results confirm that on average, spontaneous mutations degrade developmental precision, with MA lines showing a low, yet consistently increased, proportion of developmental defects and variants. This result indicates strong purifying selection acting to maintain an invariant vulval phenotype. Both developmental system and genotype significantly bias the spectrum of mutationally inducible phenotypic variants. First, irrespective of genotype, there is a developmental bias, such that certain phenotypic variants are commonly induced by MA, while others are very rarely or never induced. Second, we found that both the degree and spectrum of mutationally accessible phenotypic variation are genotype-dependent. Overall, C. briggsae MA lines exhibited a two-fold higher decline in precision than the C. elegans MA lines. Moreover, the propensity to generate specific developmental variants depended on the genetic background. We show that such genotype-specific developmental biases are likely due to cryptic quantitative variation in activities of underlying molecular cascades. This analysis allowed us to identify the mutationally most sensitive elements of the vulval developmental system, which may indicate axes of potential evolutionary variation. Consistent with this scenario, we found that evolutionary trends in the vulval system concern the phenotypic characters that are most easily affected by mutation. This study provides an empirical assessment of developmental bias and the evolution of mutationally accessible phenotypes and supports the notion that such bias may influence the directions of evolutionary change

    Health impact of US military service in a large population-based military cohort: findings of the Millennium Cohort Study, 2001-2008

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combat-intense, lengthy, and multiple deployments in Iraq and Afghanistan have characterized the new millennium. The US military's all-volunteer force has never been better trained and technologically equipped to engage enemy combatants in multiple theaters of operations. Nonetheless, concerns over potential lasting effects of deployment on long-term health continue to mount and are yet to be elucidated. This report outlines how findings from the first 7 years of the Millennium Cohort Study have helped to address health concerns related to military service including deployments.</p> <p>Methods</p> <p>The Millennium Cohort Study was designed in the late 1990s to address veteran and public concerns for the first time using prospectively collected health and behavioral data.</p> <p>Results</p> <p>Over 150 000 active-duty, reserve, and National Guard personnel from all service branches have enrolled, and more than 70% of the first 2 enrollment panels submitted at least 1 follow-up survey. Approximately half of the Cohort has deployed in support of operations in Iraq and Afghanistan.</p> <p>Conclusion</p> <p>The Millennium Cohort Study is providing prospective data that will guide public health policymakers for years to come by exploring associations between military exposures and important health outcomes. Strategic studies aim to identify, reduce, and prevent adverse health outcomes that may be associated with military service, including those related to deployment.</p
    corecore