50 research outputs found

    Non-Invasive Estimation of Local Field Potentials for Neuroprosthesis Control

    Get PDF
    Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions; i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using different number of electrodes

    Very High Frequency Oscillations (VHFO) as a Predictor of Movement Intentions

    Get PDF
    Gamma band (30-80 Hz) oscillations arising in neuronal ensembles are thought to be a crucial component of the neural code. Recent studies in animals suggest a similar functional role for very high frequency oscillations (VHFO) in the range 80-200Hz. Since some intracerebral studies in humans link VHFO to epileptogenesis, it remains unclear if VHFO appear in the healthy human brain and if so which is their role. This study uses EEG recordings from twelve healthy volunteers, engaged in a visuo-motor reaction time task, to show that VHFO are not necessarily pathological but rather code information about upcoming movements. Oscillations within the range (30-200Hz) occurring in the period between stimuli presentation and the fastest hand responses allow highly accurate (>96%) prediction of the laterality of the responding hand in single trials. Our results suggest that VHFO belong in functional terms to the gamma band that must be considerably enlarged to better understand the role of oscillatory activity in brain functioning. This study has therefore important implications for the recording and analysis of electrophysiological data in normal subjects and patients

    Non-stationary distributed source approximation: an alternative to improve localization procedures

    Get PDF
    Localization of the generators of the scalp measured electrical activity is particularly difficult when a large number of brain regions are simultaneously active. In this study, we describe an approach to automatically isolate scalp potential maps, which are simple enough to expect reasonable results after applying a distributed source localization procedure. The isolation technique is based on the time-frequency decomposition of the scalp-measured data by means of a time-frequency representation. The basic rationale behind the approach is that neural generators synchronize during short time periods over given frequency bands for the codification of information and its transmission. Consequently potential patterns specific for certain time-frequency pairs should be simpler than those appearing at single times but for all frequencies. The method generalizes the FFT approximation to the case of distributed source models with non-stationary time behavior. In summary, the non-stationary distributed source approximation aims to facilitate the localization of distributed source patterns acting at specific time and frequencies for non-stationary data such as epileptic seizures and single trial event related potentials. The merits of this approach are illustrated here in the analysis of synthetic data as well as in the localization of the epileptogenic area at seizure onset in patients. It is shown that time and frequency at seizure onset can be precisely detected in the time-frequency domain and those localization results are stable over seizures. The results suggest that the method could also be applied to localize generators in single trial evoked responses or spontaneous activity

    Measuring the complexity of time series: an application to neurophysiological signals

    Get PDF
    Measures of signal complexity can be used to distinguish neurophysiological activation from noise in those neuroimaging techniques where we record variations of brain activity with time, e.g., fMRI, EEG, ERP. In this paper we explore a recently developed approach to calculate a quantitative measure of deterministic signal complexity and information content: The Renyi number. The Renyi number is by definition an entropy, i.e., a classically used measure of disorder in physical systems, and is calculated in this paper over the basis of the time frequency representation (TFRs) of the measured signals. When calculated in this form, the Renyi entropy (RE) indirectly characterizes the complexity of a signal by providing an approximate counting of the number of separated elementary atoms that compose the time series in the time frequency plane. In this sense, this measure conforms closely to our visual notion of complexity since low complexity values are obtained for signals formed by a small number of "components". The most remarkable properties of this measure are twofold: 1) It does not rely on assumptions about the time series such as stationarity or gaussianity and 2) No model of the neural process under study is required, e.g., no hemodynamic response model for fMRI. The method is illustrated in this paper using fMRI, intracranial ERPs and intracranial potentials estimated from scalp recorded ERPs through an inverse solution (ELECTRA). The main theoretical and practical drawbacks of this measure, especially its dependence of the selected TFR, are discussed. Also the capability of this approach to produce, with less restrictive hypothesis, results comparable to those obtained with more standard methods but is emphasized

    Patterns of cortical activity during the observation of Public Service Announcements and commercial advertisings

    Get PDF
    Background: In the present research we were interested to study the cerebral activity of a group of healthy subjects during the observation a documentary intermingled by a series of TV advertisements. In particular, we desired to examine whether Public Service Announcements (PSAs) are able to elicit a different pattern of activity, when compared with a different class of commercials, and correlate it with the memorization of the showed stimuli, as resulted from a following subject's verbal interview.Methods: We recorded the EEG signals from a group of 15 healthy subjects and applied the High Resolution EEG techniques in order to estimate and map their Power Spectral Density (PSD) on a realistic cortical model. The single subjects' activities have been z-score transformed and then grouped to define four different datasets, related to subjects who remembered and forgotten the PSAs and to subjects who remembered and forgotten cars commercials (CAR) respectively, which we contrasted to investigate cortical areas involved in this encoding process. . Results: The results we here present show that the cortical activity elicited during the observation of the TV commercials that were remembered (RMB) is higher and localized in the left frontal brain areas when compared to the activity elicited during the vision of the TV commercials that were forgotten (FRG) in theta and gamma bands for both categories of advertisements (PSAs and CAR). Moreover, the cortical maps associated with the PSAs also show an increase of activity in the alpha and beta band.Conclusions: In conclusion, the TV advertisements that will be remembered by the experimental population have increased their cerebral activity, mainly in the left hemisphere. These results seem to be congruent with and well inserted in the already existing literature, on this topic, related to the HERA model. The different pattern of activity in different frequency bands elicited by the observation of PSAs may be justified by the existence of additional cortical networks processing these kind of audiovisual stimuli. Further research with an extended set of subjects will be necessary to further validate the observations reported in this paper. © 2010 Babiloni et al; licensee BioMed Central Ltd

    Differences in social decision-making between proposers and responders during the ultimatum game: an eeg study

    Get PDF
    The Ultimatum Game (UG) is a typical paradigm to investigate social decision-making. Although the behavior of humans in this task is already well established, the underlying brain processes remain poorly understood. Previous investigations using event-related potentials (ERPs) revealed three major components related to cognitive processes in participants engaged in the responder condition, the early ERP component P2, the feedback-related negativity (FRN) and a late positive wave (late positive component, LPC). However, the comparison of the ERP waveforms between the responder and proposer conditions has never been studied. Therefore, to investigate condition-related electrophysiological changes, we applied the UG paradigm and compared parameters of the P2, LPC and FRN components in twenty healthy participants. For the responder condition, we found a significantly decreased amplitude and delayed latency for the P2 component, whereas the mean amplitudes of the LPC and FRN increased compared to the proposer condition. Additionally, the proposer condition elicited an early component consisting of a negative deflection around 190 ms, in the upward slope of the P2, probably as a result of early conflict-related processing. Using independent component analysis (ICA), we extracted one functional component time-locked to this deflection, and with source reconstruction (LAURA) we found the anterior cingulate cortex (ACC) as one of the underlying sources. Overall, our findings indicate that intensity and time-course of neuronal systems engaged in the decision-making processes diverge between both UG conditions, suggesting differential cognitive processes. Understanding the electrophysiological bases of decision-making and social interactions in controls could be useful to further detect which steps are impaired in psychiatric patients in their ability to attribute mental states (such as beliefs, intents, or desires) to oneself and others. This ability is called mentalizing (also known as theory of mind)

    Spatio-Temporal Dynamics of Human Intention Understanding in Temporo-Parietal Cortex: A Combined EEG/fMRI Repetition Suppression Paradigm

    Get PDF
    Inferring the intentions of other people from their actions recruits an inferior fronto-parietal action observation network as well as a putative social network that includes the posterior superior temporal sulcus (STS). However, the functional dynamics within and among these networks remains unclear. Here we used functional magnetic resonance imaging (fMRI) and high-density electroencephalogram (EEG), with a repetition suppression design, to assess the spatio-temporal dynamics of decoding intentions. Suppression of fMRI activity to the repetition of the same intention was observed in inferior frontal lobe, anterior intraparietal sulcus (aIPS), and right STS. EEG global field power was reduced with repeated intentions at an early (starting at 60 ms) and a later (∼330 ms) period after the onset of a hand-on-object encounter. Source localization during these two intervals involved right STS and aIPS regions highly consistent with RS effects observed with fMRI. These results reveal the dynamic involvement of temporal and parietal networks at multiple stages during the intention decoding and without a strict segregation of intention decoding between these networks

    Dynamic Changes in Brain Functional Connectivity during Concurrent Dual-Task Performance

    Get PDF
    This study investigated the spatial, spectral, temporal and functional proprieties of functional brain connections involved in the concurrent execution of unrelated visual perception and working memory tasks. Electroencephalography data was analysed using a novel data-driven approach assessing source coherence at the whole-brain level. Three connections in the beta-band (18–24 Hz) and one in the gamma-band (30–40 Hz) were modulated by dual-task performance. Beta-coherence increased within two dorsofrontal-occipital connections in dual-task conditions compared to the single-task condition, with the highest coherence seen during low working memory load trials. In contrast, beta-coherence in a prefrontal-occipital functional connection and gamma-coherence in an inferior frontal-occipitoparietal connection was not affected by the addition of the second task and only showed elevated coherence under high working memory load. Analysis of coherence as a function of time suggested that the dorsofrontal-occipital beta-connections were relevant to working memory maintenance, while the prefrontal-occipital beta-connection and the inferior frontal-occipitoparietal gamma-connection were involved in top-down control of concurrent visual processing. The fact that increased coherence in the gamma-connection, from low to high working memory load, was negatively correlated with faster reaction time on the perception task supports this interpretation. Together, these results demonstrate that dual-task demands trigger non-linear changes in functional interactions between frontal-executive and occipitoparietal-perceptual cortices

    Human Processing of Behaviorally Relevant and Irrelevant Absence of Expected Rewards: A High-Resolution ERP Study

    Get PDF
    Acute lesions of the posterior medial orbitofrontal cortex (OFC) in humans may induce a state of reality confusion marked by confabulation, disorientation, and currently inappropriate actions. This clinical state is strongly associated with an inability to abandon previously valid anticipations, that is, extinction capacity. In healthy subjects, the filtering of memories according to their relation with ongoing reality is associated with activity in posterior medial OFC (area 13) and electrophysiologically expressed at 220–300 ms. These observations indicate that the human OFC also functions as a generic reality monitoring system. For this function, it is presumably more important for the OFC to evaluate the current behavioral appropriateness of anticipations rather than their hedonic value. In the present study, we put this hypothesis to the test. Participants performed a reversal learning task with intermittent absence of reward delivery. High-density evoked potential analysis showed that the omission of expected reward induced a specific electrocortical response in trials signaling the necessity to abandon the hitherto reward predicting choice, but not when omission of reward had no such connotation. This processing difference occurred at 200–300 ms. Source estimation using inverse solution analysis indicated that it emanated from the posterior medial OFC. We suggest that the human brain uses this signal from the OFC to keep thought and behavior in phase with reality
    corecore