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Abstract: Localization of the generators of the scalp measured electrical activity is particularly difficult
when a large number of brain regions are simultaneously active. In this study, we describe an approach
to automatically isolate scalp potential maps, which are simple enough to expect reasonable results after
applying a distributed source localization procedure. The isolation technique is based on the time-
frequency decomposition of the scalp-measured data by means of a time-frequency representation. The
basic rationale behind the approach is that neural generators synchronize during short time periods over
given frequency bands for the codification of information and its transmission. Consequently potential
patterns specific for certain time-frequency pairs should be simpler than those appearing at single times
but for all frequencies. The method generalizes the FFT approximation to the case of distributed source
models with non-stationary time behavior. In summary, the non-stationary distributed source approxi-
mation aims to facilitate the localization of distributed source patterns acting at specific time and
frequencies for non-stationary data such as epileptic seizures and single trial event related potentials. The
merits of this approach are illustrated here in the analysis of synthetic data as well as in the localization
of the epileptogenic area at seizure onset in patients. It is shown that time and frequency at seizure onset
can be precisely detected in the time-frequency domain and those localization results are stable over
seizures. The results suggest that the method could also be applied to localize generators in single trial
evoked responses or spontaneous activity. Hum. Brain Mapping 14:81–95, 2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

The neuroelectromagnetic inverse problem is a
highly underdetermined mathematical problem,
which lacks a unique solution. Uniqueness is usually
achieved by imposing specific constraints on the
source space [Fuchs et al., 1999; Grave de Peralta
Menendez and Gonzalez, 1998b; Scherg and Von
Cramon, 1985]. In principle two major classes of solu-
tions exists that differ in the source model they con-
sider: dipoles and distributed source models. Al-
though both approaches tend to provide reasonable
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results when the number of activated sources is small,
they are inadequate or even meaningless when the
number of activated sources approaches or surpasses
the number of sensors. Although multidipole models
cannot estimate this increasing amount of parameters
[Achim et al., 1991; Cabrera Fernandez et al., 1995], the
distributed solutions generally provide fixed source
patterns that are independent of the actual source
configuration [Grave de Peralta Menendez and
Gonzalez, 1998a, Grave de Peralta et al., 2000].

Whereas for averaged data such as the early re-
sponses of event related potentials or for averaged
epileptic spikes relatively simple source configura-
tions can be expected, it is not likely to be the case for
event related single trials, seizures or spontaneous
activity. Still localization of the generators of single
events in both cases are highly desired because it is
known that averaging prevents the detection of events
that are not completely synchronized to the stimuli
[Tallon-Baudry et al., 1997].

A vast literature support the hypothesis that fre-
quency synchrony is a basic organization principle of
the brain [Eckhorn et al., 1992; Fries at al., 1997; Gray
and Singer, 1989; Roelfsema et al., 1997]. Thus, it is
reasonable to assume that the source patterns arising
at specific time frames at a given frequency should be
simpler or at most as complex as the combination of
them for the same time frame. On this basis, we pro-
pose in this study to localize by means of distributed
solutions the generators at those scalp maps associ-
ated with specific times and frequencies where an
automatic test suggests the existence of a relatively
simple scalp potential pattern.

This approach generalizes the FFT approximation
described by Lehmann and Michel [1990] that aimed
to facilitate the localization of intracerebral generators
at particular frequency bands. This idea, i.e., the local-
ization of generators in the frequency domain has
been often reconsidered and extended [Lütkenhöhner,
1992; Raz et al., 1992; Tesche and Kajola, 1993; Valdés
et al., 1992] and applied to experimental and clinical
data considering distributed inverse solutions or di-
poles [Blanke et al., 2000; Michel et al., 1999]. In par-
ticular Sekihara et al. [1999] considered the problem of
localizing MEG generators in the time-frequency do-
main. These authors calculated a time-frequency do-
main matrix in which diagonal and off-diagonal terms
are the auto and cross-time-frequency distributions of
multichannel MEG recordings and applied afterwards
the MUSIC algorithm [Schmidt, 1986] to the average of
the time-frequency matrix over preselected regions of
interest. Whereas the latter method can be seen as the
generalization of the proposals of L̈tkenhönner [1992],

Raz and Turetzky [1992] and Valdes et al. [1992] to the
time-frequency domain, the variant described here
choose the appealing variant of Lehmann and Michel
[1990] where the computationally expensive handling
of covariance matrices is avoided.

The non-stationary distributed source isolation
technique bears the following advantages over the
FFT dipole approximation: 1) a figure of merit is pro-
posed to isolate time-frequency pairs at which a dis-
tributed inverse solution has more chances to provide
meaningful results because of the simplicity of the
scalp maps; 2) the source pattern arising for each
specific frequency is allowed to change over time and
thus non-stationary temporal source patterns can be
analyzed; and 3) frequency changes can be traced over
time in the millisecond range that facilitates seizure
onset localization, detection of transient events or
changes in the neural network organization. Further-
more, the non-stationary assumption is not only more
general but describes also better the brain behavior.
Assuming a single specific source pattern acting at a
given frequency for a whole time interval precludes
that brain areas can synchronize at a given frequency
for short time intervals as one could expect in a fast
parallel serial processing driven by frequency syn-
chronization.

In brief, the method described here is intended to
deal with distributed sources with a non-stationary
behavior over time. The initial part of the study de-
scribes the theoretical basis of the method as well as
that of the test used to evaluate the “simplicity” of the
patterns that arise at each time-frequency. Simulated
results are shown to illustrate the advantage of the
time-frequency approach. The method is applied to
the localization of seizure onset in temporal and ex-
tratemporal epilepsy in patients where surgical out-
come is known. The limitations and advantages of the
method are discussed.

MATERIALS AND METHODS

On the basis of the superposition principle it is
possible to express the potential (or magnetic field)
measured at/near Ne sensors on the scalp surface as
the superposition of pattern vectors (maps) Pi with
weights determined by the scalar temporal functions
fi(t), i.e.,

V~t! 5 O
i 5 1

Np

Pifi~t!. (1)
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Equation (1) expresses that scalp measurements can be
seen as superposition of fixed potential patterns where
each pattern is characterized by a certain time depen-
dent function. Note that these potential patterns are
not necessarily generated by a single dipole but could
instead be produced by an arbitrary set of sources
sharing similar behavior in time. In the FFT dipole
approximation [Lehmann and Michel, 1990] the mea-
sured potentials are transformed to the frequency do-
main using the Fourier transform. This approach is
unable to deal with non-stationary temporal functions,
that is, signals whose frequency content is varying
with time. Non-stationary signals appear quite often
in brain signals [Gersch, 1987].

To account for possible non-stationarities in the
temporal behavior of the patterns fi(t) , a more general
decomposition of the measured potential vector in
terms of a time-frequency representation [Boudreaux-
Bartel, 1996; Lin and Chen, 1996] can be used. Time-
frequency representations (TFRs) generalize the con-
cept of the time and frequency domains to a joint
time-frequency function that indicates how the fre-
quency content of a signal s changes over time.

There are a multitude of time-frequency represen-
tations that range from the well known short time
Fourier transform (STFT) to the scalogram based on
the wavelet transform [Unser and Aldaroubi, 1996] or
the more recently developed S-transform [Stockwell et
al., 1996]. All TFRs have in common that they trans-
form a one-dimensional signal to a two dimensional
representation in the time-frequency plane where the
spectral properties are tracked over time. Spots (en-
ergy concentrations) in the time-frequency plane iden-
tify the elementary signals (components or atoms)
composing the original signal.

To transform measured potentials to the time-fre-
quency domain it is convenient to select a linear TFR
because such transform will affect exclusively the tem-
poral behavior of the patterns while leaving intact the
patterns itself. In other words, the Pi vector remains
interpretable as a potential and the functions fi are
transformed to the time-frequency domain, i.e.,

Ṽ~w, t! 5 O
i 5 1

Np

Pif̃i~w, t!. (2)

where w denotes frequency and Ṽ, f̃ stand for the
time-frequency representation of V and f respectively.
There are several examples of linear TFR, the wavelet
transform, the STFT or the S-transform. The S-trans-
form provides frequency-dependent resolution while

maintaining a direct relationship with the Fourier
spectrum. Due to reasons that will be clarified later, it
is convenient to select a TFR with complex coefficients
such as the S-transform or the STFT. For latter case, the
continuous STFT of V and f reads:

Ṽ~w, t! 5 E
2 `

`

V~t!h*~u 2 t!e 2 j2pwudu (3)

and

f̃i~w, t! 5 E
2 `

`

fi~t!h*~u 2 t!e 2 j2pwudu (4)

where h(t) is a short analysis window localized around
t 5 0 and w 5 0. Note that V(t) and Ṽ (w,t) are vectors
with Ne components. In what follows subscripts will
be used to denote indexes of the patterns and super-
scripts for components within the measurement vec-
tor.

Let us assume that for one specific frequency w 5 w*
at a given time t 5 t*, only one of the patterns, the k-th,
is active, i.e.,

f̃i~w*, t*! 5 0 ; i Þ k (5)

In this case, equation (2) reduces to

Ṽ~w*, t*! 5 Pkf̃k~w*, t*!. (6)

We denote by mi the two-dimensional column vector
composed by the real and the imaginary parts of the
i-th component of inline Ṽ (w*, t*), i.e.,

mi 5 @Re al$Ṽi~w*, t*!%, Im ag$Ṽi~w*, t*!%#t (7)

If the hypothesis that the k-th pattern acts alone holds,
then the set of 2D points mi (i 5 1…Ne) form a straight
line on the x,y plane. If more than one pattern is active,
they form a cloud of points on the x,y plane. Conse-
quently, the plot of the real versus the imaginary part
of the transformed potential data provides the basis
for a test to detect pairs (t*,w*) at which the scalp
potential map is simple in the sense that it is not the
superposition of several potential maps P but a single
map that dominates all over the others [Michel et al.,
1990]. The convenience of selecting a complex valued
time-frequency representation (e.g., the STFT or the
S-transform) results evident. The test for deviation of
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linearity, termed from now on the map simplicity test,
can be automatically done considering the eigenvalues
associated to the second moment matrix C of the 2-di-
mensional resulting cloud of points with respect to the
origin, i.e.,

C 5 O
i

Ne

mimi
t (8)

Because C is (semi) positive definite it can be decom-
posed as:

C 5 l1G1G1
t 1 l2G2G2

t

The ratio between the minimum (l2) and the maxi-
mum eigenvalue (l1), i.e.,

r 5
l2

l1
(9)

is proposed as a figure of merit to evaluate deviation
from the straight line. Note that with this definition, r
is constrained to the interval [0 (straight line), 1(cir-
cle)]. Clearly, if the r value is near to zero it is reason-
able to accept that the pattern is simple and thus that
an adequate estimator of the r-th component of the
active (k-th) pattern inline P̂k

i at the corresponding
(t*,w*) pair is given by the projection of the STFT of
the data over the subspace associated to the largest
eigenvalue l1 i.e.,

P̂k
i 5 G1

t mi ~i 5 1. . .Ne! (10)

Note that the projection of the coefficients over this
subspace has the interpretation and physical units of
the measured data. This estimated vector map is the
one used as the input for the source localization pro-
cedure when the value of r is low enough.

A second criterion could be useful to decide, with-
out any a priori information about the sources, which
are the time and frequencies pairs at which a distrib-
uted inverse solution has the higher chances to suc-
ceed. This criterion is related with the energy of the
estimated maps on the time-frequency plane and we
have termed it, time-frequency energy. High values of
this magnitude suggest the presence of strong sources
at those time-frequency pairs.

Summarizing, the concrete steps proposed to sim-
plify the localization of distributed generators in the
time-frequency domain are:

1. Register the data.
2. Apply the STFT to the recorded data matrix ac-

cording to equations 9 (2–4). For EEG measure-
ments, transform the data to average reference.

3. Compute the eigenvalues and eigenvectors of the
second order moment matrix (equation 8).

4. Compute the scalp map simplicity test, i.e., the
value of r defined by equation (9) and use the
time-frequency energy plot and the r plot to se-
lect the time-frequency pairs to be localized.

5. Apply a distributed inverse solution to the esti-
mated pattern inline P̂k at pairs (t*,w*) at which r
is near to zero to obtain an estimation of the
generators of the scalp maps associated to the
specific (t*,w*).

RESULTS

This section describes the results obtained with this
method in some computer-generated data as well as in
the analysis of the ictal EEG of an epileptic patient.
Although the goal with the synthetic data is to exem-
plify all the steps of the proposed method, the pa-
tient’s analysis aims to illustrate its applicability to
experimental data. The proposed isolation technique
is a hybrid of tools with well-established mathematical
properties, i.e., time-frequency representations and in-
verse solutions. Thus, we do not pursuit with the
simulations a systematic testing of these tools but
instead to illustrate how they can be combined to
produce meaningful results in the analysis of experi-
mental data. It is nearly impossible to extend the sim-
ulations to encompass all the practical difficulties that
one has to face when dealing with experimental data.
It is troublesome to produce synthetic data that resem-
ble the way in which brain areas communicate be-
cause we have still little clues about this topic. For this
reason, we prefer to present a simple illustrative ex-
ample with simulated data and to evaluate afterwards
the potential of the method in experimental data
where we aim to apply it and where we count with the
golden standard of intracranial recordings to confirm
the localization results.

Figure 1.
Simulated sources positions, time courses, frequency spectrum
and time-frequency behavior. The tip of each arrow marks the
position of the source on the sagittal slices of an averaged brain
The arrows link the sources to their corresponding spectra
(shown at the left), time course (top) and time-frequency coeffi-
cients.
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Analysis of Synthetic Data

Figure 1 depicts the position of the three sources
used in the simulation and their time-frequency char-
acterization. The tip of each arrow marks the position
of the source on the sagittal slices of a brain obtained
from the average of 152 normal volunteers, available
in the Statistical Parametric Mapping Toolbox [Friston
et al., 1995]. The arrows link sources to their corre-
sponding spectra (shown at the left), time course (top)
and time-frequency coefficients calculated by means
of the short time Fourier transform. Note that the three
sources are chosen to produce separable energy spots
on the time-frequency plane. There are two sources

active at t 5 40 but with different frequencies, one at
f 5 0.1 and the other at f 5 0.4. A third source is active
at t 5 80 and f 5 0.1. Frequencies are normalized to be
between zero and one.

The time courses of the three sources are assumed to
represent intracranial potentials. The direct problem
was solved to obtain the scalp potentials on 125 elec-
trodes homogeneously distributed over the scalp sur-
face. The STFT was computed using the function pro-
vided for such purpose in the Matlab Signal
Processing Toolbox. This function splits the signal into
overlapping segments, windows each segment with a
predefined window (Hanning of length 7 in our case)
and forms the columns of the time-frequency repre-

Figure 2.
A: Time-frequency energy. B: Scalp Map simplicity test for the data generated by the combination
of the three sources shown in Figure 1.
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sentation with their zeros padded discrete Fourier
transform of length 128. An overlapping of 6 frames
was allowed in the windowing of the signal.

Figure 2A shows the time-frequency energy plot for
the previously described scalp data composed by
three sources. The three clear spots at the correct time-
frequency pairs illustrate that the spectrogram of the
scalp data is able to discriminate the number of
sources and their properties. The time-frequency en-
ergy plot suggests as interesting spots the pairs t 5 40,
f 5 0.1; t 5 40, f 5 0.4; t 5 80; f 5 0.1. The second plot
in Figure 2B depicts the coefficients of the simplicity
test described in previous section, i.e., the map sim-
plicity test. High values of the coefficients (lighter col-
ors) denote the regions of the time-frequency plane
where the scalp maps seem to represent the superpo-
sition of more than one pattern and thus indicate that
the source distribution might be more complex. Note
that the pairs selected based on the time-frequency
energy correspond in Figure 2B dark areas, indicating

that localization could be attempted at this pairs. Note
also that this plot splits the time-frequency plane into
three regions where the sources are acting alone. It
also correctly indicates an increasing complexity of the
potential patterns at those regions where the activity
of the sources overlap (see their temporal courses in
Fig. 1).

Figure 3 depicts the localization obtained for the
three time-frequency pairs selected because of previ-
ous tests. The results are obtained with ELECTRA
inverse solution [Grave de Peralta et al., 2000] that
constraints because of physical reasons, the primary
currents to be irrotational. In the plots, the highest
absolute value of the estimated solution is encircled to
facilitate discrimination. Figures 3A–C depict the lo-
calization for t 5 40, f 5 0.1; t 5 80; f 5 0.1 and t 5 40;
f 5 0.4 respectively. Comparisons with the actual
source positions represented in Figure 1 show the
accuracy in their localization. In conclusion, in this
example the isolation approach allowed to accurately

Figure 3.
Source localization obtained us-
ing ELECTRA for the three time-
frequency pairs selected accord-
ing to Figure 2. A: Localization
for t 5 40, f 5 0.1; (B) for t 5
80; f 5 0.1; (C) for t 5 40; f 5
0.4. Maxima are encircled to fa-
cilitate discrimination given the
focalization of the reconstructed
sources.
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identify the number of sources, their frequency and
their localization.

Analysis of Seizure Onset in Epileptic Patients

Previous simulation helps to understand the
method and to evaluate its performance in a situation
without noise and where all parameters are con-
trolled. Everyday experimental data are noisy, how-
ever, and it is not likely to find in-practice generators
with such well-defined patterns in the time-frequency
plane. Thus, in this section we show the results of a
more clinically relevant analysis carried on to localize
seizure onset in an epileptic patient.

The patient is an 18-year-old, right-handed woman
who started having seizures at the age of seven. The
habitual seizures began with an impairment of con-
sciousness and were followed by manual automatism
and a rightward deviation of the eyes and the head.
Seizure frequency was 5–12/week, often followed by
secondary generalization. On admission, neurological
examination and MRI were normal. Presurgical eval-
uation, including continuos video-EEG recording, nu-
clear imaging, and neuropsychological testing indi-
cated left frontal epilepsy. Invasive monitoring was
demanded to precisely localize the epileptic focus and
to differentiate it from eloquent cortex.

More than 12 seizures were recorded in this patient
from 28 scalp electrodes (sampling rate 128 Hz). Two
typical seizures are shown in Figures 4B and 5B. The
same analysis procedure described before was applied
to eight of the seizures that showed fewer artifacts. For
the computation of the STFT, we used a Kaiser win-
dow of 128 points with an overlapping of 126 points,
which is in practical grounds a more convenient se-
lection than the Hanning window for the analysis of
experimental data. Frequency resolution was again set
to one Hz resulting in a temporal resolution of around
30 msec. For all eight seizures, we found very similar
patterns for the energy in the time-frequency plane.
Typical time-frequency patterns for the seizures are
shown in Figures 4A and 5A, respectively. According
to the plots, seizures start with a frequency of 10–11

Hz and the frequency slightly decrease afterwards.
The periods of high energy are associated to periods
were the scalp map simplicity test suggests reliable
localization. Note that there is a perceptible shift in
time between the seizures plots and their time-fre-
quency representation that is due to the use of a
sliding window for the computation of the time-fre-
quency representation. This implies that the initial 64
samples of the seizure are not reflected in the time-
frequency plots.

Localization was carried out on the individual pa-
tient MRI using ELECTRA. The point marked by an
arrow on the time-frequency energy plot in Figures 4A
and 5A were considered as the start of the seizure as
suggested by the emergence of a sustained rhythm.
The localization results for these pairs are shown in
Figures 6 and 7. The lighter colors indicate the electri-
cal activation detected by the inverse solution, con-
fined in this case to the left frontal lobe. The gray scale
representation of the solution impedes the differenti-
ation between positive and negative potentials. A
color representation plate will show positive polarity
at the upper frontal site with a posterior negativity in
the slice below. No significant activity is observed in
other MRI slices except for the neighborhood of the
maxim, which can be explained in terms of the natural
blurring inherent to distributed inverses. In the anal-
ysis over time for this frequency, we observed that the
inverse solution results remained identical for the next
150 msec. Such stability of the localization results over
time and the absence of additional activation spots on
other MRI slices corroborate the simplicity of the scalp
map detected by the simplicity test. Note that the
localization algorithm suggests as the epileptogenic
area the left frontal lobe, which coincides with the
invasive electrocorticographical findings. Figure 8
shows the results of directly applying ELECTRA to
the scalp potential map visually identified as the time
of seizure onset for the seizure shown in Figure 4B
(marked with an arrow). It is noticeable that several
functionally different areas seem to be simultaneously
activated. Although, the maxima of the activity at this
time coincides with the one found with the source
isolation approach, we observe a more widespread
activation including bilateral activation of frontal
lobes. Also, contrasting with the stability of the local-
ization results over time observed for the source iso-
lation approach, in the temporal estimation the posi-
tion of the maxima abruptly changes from one
hemisphere to the other for the maps corresponding to
the subsequent 150 msec.

Figure 4.
A: Scalp Map simplicity test and time-frequency energy for the
seizure. B: A typical seizure for the patient. Note that the time-
frequency plots are slightly shifted (64 frames) with respect to the
seizure plot due to the use of a sliding window in the computation
of the time-frequency representation. Despite the shift, spikes and
seizure onset are clearly detected by the time-frequency energy
plot. The arrows mark the time of seizure onset in the time-
frequency energy (A) and the EEG (B).
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DISCUSSION

Until recently, spectral analysis of brain activity was
limited to signals without major temporal changes or
that are slowly changing with time. The development
of signal processing techniques able to deal with non-
stationary signals has broadened the range of applica-
tions of this technique. It is evident that time-fre-
quency analysis is a more general approach to study
spontaneous or evoked brain activity than temporal or
spectral analysis alone. The enormous amount of data
generated by this processing, however, is overwhelm-
ing. This problem is avoided here by using a summa-
rizing measure, the time-frequency energy that indi-
cates the energy of each (estimated) potential map in
the time-frequency plane. In practice, this plot al-

though based on the estimated maps, looks nearly
identical to the average of the squared STFT over
channels. There are several reasons to believe that this
plot could become a useful summarizing tool to dif-
ferentiate (if possible) epileptic seizures according to
their frequencies. First, time and frequency at seizure
onset were adequately detected by this single plot.
This is certainly not easy by simple visual EEG inspec-
tion or spatial analysis alone. Furthermore, isolated
spikes or transient events are reflected as energy spots
in this map. In classical spectral analysis this events
are smeared over the spectrum and therefore non-
longer recognizable. There is an obvious price to pay
for compressing all this information in a single mea-
sure. Weak rhythmic events with very focal localiza-
tion will be hardly seen in the measure that is, how-
ever, capable of detecting focal strong events such as
the epileptic spikes in the examples shown in Figures
4 and 5.

Time-frequency analysis provides a powerful alter-
native for isolating signal components of interest from
contaminating noise components. Noise can be iden-
tified much more easily in the joint time-frequency

Figure 5.
Idem to Figure 4 for a second seizure of the patient, i.e., (A) Scalp
Map simplicity test and time-frequency energy for the seizure
shown in (B). Note that the pattern at seizure onset on the
time-frequency energy plot is nearly identical to that of a different
seizure shown in Figure 4A.

Figure 6.
ELECTRAs localization results using the source isolation approach at time-frequency pair marked
with an arrow in the time-frequency energy plot shown in Figure 4A and identified as time of seizure
onset. Lighter colors indicate strongest electrical activation that is restricted for this time-frequency
pair to the left frontal lobe.

r Non-Stationary Distributed Source Approximation r

r 91 r



domain than in either the time or the frequency do-
main alone. Although noise tends to spread widely in
the time-frequency plane, neurophysiological signals
are often concentrated [Gonzalez et al., 2000]. This
explains why the approach proposed here constitute a
solution to the problem of separating signal compo-
nents of interest from the noisy data. Rhythmic activ-
ity of the generators arrives simultaneously to all sen-
sors because dielectric effects are negligible in brain
tissues at the frequencies of interest. Consequently, the
signal’s time-frequency characteristics associated to
brain responses must be similar in all channels. In
contrast, individual sensors noise will be hardly seen
in the time-frequency energy plot because the averag-
ing will suppress activity not highly correlated over
channels. Consequently, the maps selected on the ba-
sis of this approach should be less noisy and complex
than the corresponding maps in the temporal domain,
which suggests that localization of events buried into
spontaneous activity could be possible. Obviously, if
signal and noise share simultaneously similar frequen-
cies no reliable localization will be obtained.

There are different possibilities to use time-frequency
analysis for simplifying maps to consider for source
localization. The approach described here is computa-
tionally less expensive than filtering the data at given
frequency bands and localizing afterwards the genera-
tors at each time frame. In such an approach there is no
clear way to decide which frequency band and times
should be of interest to essay source localization. Equa-
tion (1) represents a factorization of the scalp measured
data into spatial and temporal patterns that is also at the
basis of methods such as PCA or its generalization to
non-gaussian data known as ICA. These methods have
been also used to decompose the scalp maps before
applying source localization algorithms. Although the
basic limitations of PCA have been known for a while,
the number of applications combining ICA decomposi-
tion and inverse solutions is increasing. In this combina-
tion, ICA is used to separate the multichannel EEG data
into activation maps due to temporally independent sta-
tionary sources. The inverse solution is afterward ap-
plied to the different activation maps. The basic diffi-
culty we see in this procedure is the strong hypothesis

Figure 7.
ELECTRAs localization results using the source isolation approach at time-frequency pair marked
with an arrow in the time-frequency energy plot shown in Figure 5A and identified as time of seizure
onset. Note that except for the intensity of the activity (see scale) the localization results are
identical to
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underlying the ICA method itself: generators composing
a neural network have statistically independent tempo-
ral behavior. This hypothesis somehow contradicts the
idea of short-lived periods of frequency synchronization,
which establish explicit non-stationary temporal depen-
dencies among the temporal courses of the network
components. There is no guarantee that the ICA esti-
mated activation maps (correctly determined up to a
constant factor) are generated by a simple generator
configuration neither there is test to evaluate their sim-
plicity. There is consequently, no reason to expect a
better behavior of a distributed inverse than when ap-
plying such inverse to the original measured maps. Pre-
vious arguments explain why do we consider more neu-
rophysiologically appealing the source isolation
technique described in this study accompanied by the
simplicity test to help to reduce the amount of maps to
localize.

There are, however, limitations that we have to be
aware of. First, test for the simplicity of the patterns can
produce false positive results. Second, as happens with
many methods of analysis in functional neuroimaging,
there is no clear way to select a threshold in the value of
r to confirm that a map is simple. So far, we have no

definitive answer to this question unless we restrict our
definition of simple patterns to those generated by single
dipoles. Only in that case, could we carry out a sequence
of simulations to statistically select a threshold based on
an empirical distribution of the r-values. For more gen-
eral sources distributions we would have to define first
the meaning of simple (we are using a rather intuitive
definition) and such definitions end sometimes in rather
cumbersome or philosophical problems. For this reasons
we prefer to use a very practical (empirical approach) in
which we localize potential maps where the combination
of both measures, i.e., time-frequency energy and sim-
plicity test suggest chances to succeed. In addition, the
simplicity test described in this study relies on two as-
sumptions: a) the selected time-frequency representation
is linear, and b) the coefficients of the TFR have an
imaginary part. These assumptions somehow limit the
use of time-frequency representations different from the
STFT or the S-transform. Still, these TFRs can be seen as
complementary because the S-transform have resolution
properties similar to the wavelet transform whereas the
STFT is a simple but more convenient representation for
signals whose energy is concentrated in the low fre-
quency band. Although we have not extensively tested

Figure 8.
ELECTRA solution for the raw EEG data at the time of seizure onset marked with an arrow in
Figure 4B. Note the more sparse character of the solution when compared with the solution shown
in Figures 6 and 7 with bilateral activation in frontal lobes and other cortical sites.
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the S-transform, its resemblance to the wavelet trans-
form allows to infer that this transformation will succeed
in achieving high temporal resolution for the high fre-
quency band but poorer resolution than the STFT for the
low frequency band. Because seizures basically arise in
the delta-theta-alpha bands, there is no theoretical reason
to expect that the results described in this study could be
improved by employing the S-transform. The same does
not hold for the analysis of single trials event related
potentials where the S-transform could be more effective
to detect short lived periods of synchronization on the
low or high gamma bands. In any case, the trade off
between time and frequency resolution is inherent to all
time-frequency representations. The more it is refined
the resolution in time the worse will the resolution in
frequency be and vice versa. Because it is now accepted
that human neuronal networks synchronize over short
time intervals on particular frequency bands we consider
this approach more neurophysiologically sound that
localization at single time frames or at specific frequen-
cies alone and we expect that the resolution in time-
frequency attainable with the STFT or the S-transform
should suffix to characterize most of the studied
processes at least for the classically defined EEG fre-
quency bands. Further research in this direction is still
required.

Although illustrated here in the analysis of epileptic
seizure onset with a predefined inverse solution, the
applicability of the method extends far beyond these
limits. Any arbitrary inverse solution could be applied
to the maps obtained after applying the source isola-
tion technique, which could be particularly interesting
for inverses that assume the existence of a single gen-
erator. The results obtained with real data suggest that
the method could be applied to the tracing over time
of the generators responsible for specific brain
rhythms. This is of major importance for many drug
studies [Dierks et al., 1993; Michel et al., 1993]. In
addition, many psychiatric diseases are characterized
by frequency changes [Galderisi et al., 1992]. In the
particular case of epileptic seizures, the fact that this
approach can detect quite precisely the time and fre-
quency of the seizure (ictal) onset constitutes its enor-
mous advantage over the classical FFT. Nevertheless,
the most appealing application of this technique is in
our opinion the localization of the generators of single
trial evoked responses.

CONCLUSIONS

We have described a method to simplify the local-
ization of distributed generators based on isolating
patterns in the data that are simple enough in the

time-frequency domain to expect a reliable perfor-
mance of the inverse solution. The key to this method
is the transformation of the recorded data to the time-
frequency domain by means of the Short Time Fourier
Transform, i.e., the method can deal with data with
spectra changing over time. An automatic test to eval-
uate how simple are the potential patterns to be local-
ized was also developed. The performance of the
method in synthetic and experimental data is shown
to be adequate. The distributed source isolation tech-
nique is applicable to non-stationary electric and mag-
netic recordings of the CNS activity eliminating a
major limitation of previous methods to localize
sources in the frequency domain.
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