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Abstract: Measures of signal complexity can be used to distinguish neurophysiological activation from
noise in those neuroimaging techniques where we record variations of brain activity with time, e.g., fMRI,
EEG, ERP. In this paper we explore a recently developed approach to calculate a quantitative measure of
deterministic signal complexity and information content: The Renyi number. The Renyi number is by
definition an entropy, i.e., a classically used measure of disorder in physical systems, and is calculated in
this paper over the basis of the time frequency representation (TFRs) of the measured signals. When
calculated in this form, the Renyi entropy (RE) indirectly characterizes the complexity of a signal by
providing an approximate counting of the number of separated elementary atoms that compose the time
series in the time frequency plane. In this sense, this measure conforms closely to our visual notion of
complexity since low complexity values are obtained for signals formed by a small number of “compo-
nents”. The most remarkable properties of this measure are twofold: 1) It does not rely on assumptions
about the time series such as stationarity or gaussianity and 2) No model of the neural process under
study is required, e.g., no hemodynamic response model for fMRI. The method is illustrated in this paper
using fMRI, intracranial ERPs and intracranial potentials estimated from scalp recorded ERPs through an
inverse solution (ELECTRA). The main theoretical and practical drawbacks of this measure, especially its
dependence of the selected TFR, are discussed. Also the capability of this approach to produce, with less
restrictive hypothesis, results comparable to those obtained with more standard methods but is empha-
sized. Hum. Brain Mapping 11:46–57, 2000. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

Functional neuroimaging aims to study the dy-
namic functioning of the human brain while subjects
are at rest or performing controlled perceptual or cog-
nitive tasks. Electroencephalography (EEG), Magne-
toencephalography (MEG), Event related potentials
(ERPs) or functional magnetic resonance imaging
(fMRI) are some of the techniques currently in use to
quantify and localize in space and/or in time some
correlates of neuronal activity related to a task. While
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fMRI has direct localizing value, i.e., it provides im-
ages of functional activation within the brain, EEG,
MEG, or ERP provide maps over the scalp surface and
one has to solve an inverse problem to obtain esti-
mates of the electrical activity within the brain. In any
case, these techniques usually lead to a large number
of signals (time series) which are a function of space
and time and which have to be further analyzed in
order to detect the brain or scalp sites in which con-
sistent patterns of activation arise. Concretely we have
to differentiate signal from noise on the basis of the
time series measured or from those estimated by an
inverse solution.

The intuitive rationale behind the visual identifica-
tion of a signal is the presence of an organized re-
sponse, that is, the emergence of a typical pattern that
a trained observer can often differentiate from a “non
signal” (noise). Although this pattern usually differs
from one technique to another, the common rule that
differentiate signal from noise on visual basis is that
signals seem to be composed of a few elementary
waveshapes sometimes referred to as components.

In this paper we explore a recently developed ap-
proach to calculate a quantitative measure of deter-
ministic signals complexity and information content:
The Renyi number [Renyi, 1961]. The Renyi number is
by definition an entropy, i.e., a quantitative measure
of the level of disorder in a physical system. Entropy
has been used in statistics and information theory to
develop measures of the information content of sig-
nals [Shannon, 1948]. The novelty of the approach
presented in this paper resides in that the Renyi en-
tropy (RE) is calculated over the basis of the time
frequency representation (TFR) of the measured sig-
nals as suggested by Willians et al. [1991]; Flandrin et
al. [1994] and Baraniuk et al. [submitted]. This mea-
sure relies on the “counting” of the number of com-
ponents (energy spots) that appear in the time fre-
quency representation of a signal. In this sense, this
measure closely conforms with our visual notion of
complexity and assumes nearly nothing about the
properties of the process generating the signal or
about the signal itself. For these reasons, the Renyi
entropy calculated over the basis of TFRs is a measure
particularly suitable to analyze the complexity of a
large range of neurophysiological signals.

Like many other methods in use nowadays the
methodology described in this paper aims to detect
activation in functional neuroimaging data on the ba-
sis of the measured time series. However, in contrast
with many of the currently used methods it requires
nearly no assumptions about the signals itself or the
neural process generating it. By using the natural as-

sociation between organization of the signal over time
and activation there is no need to model the underly-
ing neural process, e.g., the hemodynamic response
for fMRI. Besides, the estimation of the RE based on
the TFR allows for the analysis of signals which are
non stationary or non gaussian. It relies only on the
assumption that the properties of signals and noise
differ in the time-frequency plane.

In the initial part of the paper the concept of Renyi
entropy and the basis for its calculation using TFRs are
presented. An initial section discusses the concept of
complexity and its relationship to disorder and noise
and illustrates how these aspects are reflected by a
time frequency representation. Synthetic data are used
to reveal the capabilities of the time frequency repre-
sentation to separate independent signals in the time
frequency plane and to clarify how the RE indirectly
counts them. It is shown that the estimate of the num-
ber of components is stable for a fixed TFR once an
adequate separation between the elementary signals is
reached. The applicability of the Renyi number to
differentiate signals from noise are then exemplified
using data from different neuroimaging modalities,
namely, fMRI time series, intracranial event related
potentials and the time series obtained from applying
a distributed inverse solution termed ELECTRA
[Grave et al., 2000] to scalp recorded event related
potentials. Some theoretical limitations associated
with the analogy probability density and TFRs used to
calculate the RE are discussed. These aspects are con-
fronted to the practical merits of the measure to reflect
our visual perception of complexity for many different
types of neurophysiological signals.

Basic theory

This section first describes the concept of time fre-
quency representations and shows the applicability of
them to differentiate elementary signal components in
the time frequency plane. It follows the definition of
complexity and the basis to calculate it using TFRs. A
third section discusses the selection of the TFR. Finally
the concrete steps to be followed in the analysis are
itemized. Basic concepts are marked in italics.

Signals, complexity, elementary components and time
frequency representations

Many neurophysiological signals are obtained by
receivers recording variations of brain activity over
time. Brain signals are in general non-stationary, that
is, their frequency content is varying with time [Ger-
sch, 1987; Unser and Aldroubi, 1996]. Therefore the
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most informative description of such signals is
achieved by directly represent their frequency content
while still keeping the time description parameter.
This is precisely the aim of time frequency represen-
tations [Boudreaux-Barte, 1996; Lin and Chen, 1996].
Time frequency representations (TFRs) generalize the
concept of the time and frequency domains to a joint
time-frequency function Cs(t, f) that indicates how the
frequency content of a signal s changes over time, i.e.,
they tell us which frequencies are contained in a signal
and when these frequencies appear.

There are a multitude of time frequency represen-
tations that range from the well known spectrogram to
the more recently developed scalogram based on
wavelet transform. All TFR have in common that they
transform a one dimensional signal to a two dimen-
sional representation in the time frequency plane
where the spectral properties are tracked over time.
Thus, spots or energy concentrations in the time fre-
quency plane identify the elementary signals, some-
times referred as components or atoms, that superim-
pose to form the original signal. This is the key point
in the relationship between our visual notion of com-
plexity and the estimates provided by the method
discussed in this paper. It is intuitively reasonable to
assume that signals of high complexity (noise) must be
constructed from large numbers of elementary com-

ponents while signals of low complexity should be
composed of a few elementary components. Activa-
tion is in this sense associated to organization of the
signals (few components in the time frequency plane)
while noise is associated to disorder (a multiplicity of
components). It is important to note that this intuitive
idea of complexity does not rely upon the locations in
time of these elementary components but instead in
their number. Independently of the neuroimaging mo-
dality, a signal reflecting activation arises directly or
indirectly from the “synchronized” activity of groups
of neurons and such synchronization leads to less
complex signals than the chaotic firing of the same
group.

In Figure 1a and b we illustrate the characteristics of
the time (uppermost insets), the frequency (leftmost
insets) and the time-frequency representations of two
signals. They are composed by two (a) and eight (b)
elementary gaussian atoms, i.e., concentrations (spots)
of energy in the time frequency plane. It is clear from
the figure that the signal composed by the largest
number of components visually resembles more a dis-
organized or noisy process than the one formed by
only two components. Note also how the TFR (Morlet
scalogram) adequately identifies the number and fre-
quencies of these atoms while the power spectrum
does not.

Figure 1.
Time, frequency and time-frequency representations of two sig-
nals. At the top of each inset is the time course of the signals
depicted. The power spectrum is shown at the left of each inset.

The big square shows the time frequency representation (Morlet
scalogram) for two signals composed by two (a) and eight (b)
elementary gaussian atoms.
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Measures of the complexity of signals: the renyi’s
numbers or renyi’s entropies

The concept of complexity is far too diffuse to ex-
pect any quantitative measure of it to apply univer-
sally. So far, two main basic approaches have been
used to evaluate complexity of time series: a) Entropy
measures derived in the framework of information
theory and calculated on the basis of probabilistic
models [Willians et al., 1991; Flandrin et al., 1994;
Barniuk et al., submitted] and 2) Entropy measures
derived in the context of non linear analysis or chaos
theory [Wackermann et al., 1993; Weber et al., 1998;
Cerutti et al., 1996]. One common element between
both is the underlying association between highly
complex signals and noise.

Here we relate the term complexity to the idea
described in the previous section, i.e., to the amount of
elementary atoms or components constituting the sig-
nal. The concept of complexity will be quantified by
means of the most classical measure of disorder in a
physical system: the entropy. Besides its initial appli-
cation in the field of molecular physics, entropy has
been used in statistics and information theory to de-
velop measures of the information content of signals
[Shannon, 1948]. Shannon entropy is the classical mea-
sure of information content and is defined for an n-
dimensional probability density (PD) distribution P(x)
as:

H~P! 5 E
2 `

`

P~x!logP~x!dx (1)

An efficient estimator for the probability density dis-
tribution usually requires either several samples of the
process or strong assumptions about the properties of
the studied process. Thus, here we explore a novel
approach to measure complexity trough entropy sug-
gested by Willians et al., [1991] and further developed
by Flandrin et al., 1994 and Baraniuk et al., [submitted]
in the field of signal processing. In this approach the
probability density function is replaced by the coeffi-
cients Cs(t, f) of a given time frequency representation
of the signal s(t) which leads for the Shannon entropy
to:

H~C! 5 E
2 `

` E
2 `

`

C~t, f!log C~t, f!dtdf (2)

This approach exploits the apparent analogy be-
tween time frequency representations and probability

densities described in Willians et al. [1991]. In such an
approach, TFRs are interpreted as bidimensional en-
ergy densities in the time-frequency domain. This
analogy relies partially upon the parallelism that ex-
ists for the marginal properties of some TFRs and
those of the probability densities, namely:

a) time marginal preservation: * Cs(t, f)df 5 us(t)u2

b) frequency marginal preservation: * Cs(t, f)dt 5
uS(f)u2

c) energy preservation: * Cs(t, f)dtdf 5*us(t)u2 dt
5\s\2

2

where u.u stands for the modulus and \.\ for the signal
norm. Since several time frequency representations
can achieve negative values the use of the more clas-
sical Shannon information as a measure of complexity
is prohibited (due to the presence of the logarithm
within the integral in (3)) and some authors [Willians
et al., 1991; Flandrin et al., 1994, Baraniuk et al., sub-
mitted] have proposed the use of a relaxed measure of
entropy known as the Renyi entropy of order a:

Ha
R~P! 5

1
1 2 a

log2

E Pa~x!dx

E P~x!dx

(3)

Ha~CS! 5
1

1 2 a
log2 EE 1

Cs~t, f!dtdf

EE CS~t, f!dtdf2
a

(4)

Following Baraniuk, the passage from the Shannon
entropy H to the class of Renyi entropies Ha

R involves
only the relaxation of the mean value property from
an arithmetic to an exponential mean and thus in
practice Ha

R behaves much like H. The Shannon en-
tropy can be recovered as lima31 Ha

R(P) 5 H(P).
The rationale behind substituting the probability

density function P by the coefficients Cs(t, f) of the
time frequency representation of the time series s is
appealing: the peaky TFRs of signals comprised of a
small numbers of elementary components (organized
signals) would yield small entropy values, while the
diffuse TFRs of more complicated or noisy signals
would yield large entropy values. Based on this idea
and several empirical studies, Willians et al., [1991]
proposed the use of the 3rd order Renyi entropy (a 5
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3 in equation 4) as a measure of the complexity of the
signal. Note that that (3) and (4) not only differ in the
substitution of the probability density by the TFR
coefficients but also that (4) is a prenormalized ver-
sion, equivalent to normalizing the signal energy be-
fore raising the TFR coefficients to the a power. Thus
we will use definition (4) for the rest of the paper.

Selecting the time frequency representation

The complexity value estimated through the anal-
ogy probability density and TFR depends upon the
TFR employed. While this element certainly play
havoc with a uniquely defined measure of complexity,
the results of the numerical experiment carried out by
Willians et al. [1991], as described below shed light on
how the RE behaves. In practice and in agreement
with these authors we have found that the RE value
tends to stabilize for a fixed number of components or
atoms once the atoms are clearly resolved in the time
frequency plane. This stabilization occurs for all time
frequency representations even if they differ in the
value at which the RE saturates.

To test the counting behavior of H3(Cs), Willians et
al. [1991] selected two gaussian atoms and plotted the
values of the RE vs. the separation in time of the
atoms. They observed that the H3 value stabilized
once the two atoms became disjoint in the time fre-
quency plane. In Figure 2, we present the results of a

similar simulation that we carried out for the Morlet
scalogram (the square of the wavelet transform) in-
stead of the Wigner Ville originally used in Willian’s
paper (Willians et al., 1991]. The results for the scalo-
gram are similar, i.e., the Renyi value stabilizes for
adequate separation between atoms.

This analysis reflects the well known trade-off be-
tween time and frequency (or scale) resolution. High
frequency regions of the wavelet transform have very
good time resolution whereas low frequency regions
have very good spectral resolution. The two atoms are
better resolved in time for the higher frequencies than
for the lower ones which explains why the counting of
elementary components reaches a stable value for
smaller distance when the frequencies of the compo-
nents are higher.

These elements lead to an important question:
which is the more suitable TFR to obtain the most
accurate estimates of complexity for a given data set?
In practice, the best estimates are obtained with the
TFR which is better in separating the elementary at-
oms that conform our signal. While quasi-stationary
signals could be adequately analyzed with the simple
spectrogram its low resolution at high frequencies
affects the differentiation between signals and noise
when noise is concentrated in the high frequency
band. As shown below an adequate tuning of the
scalogram reached by changing the length of the Mor-
let analyzing wavelet at coarsest scale is sufficient to
separate the components for signals of different na-
ture. In summary, because there is no ideal TFR that
fulfills all desirable properties, we recommend to ex-
plore the kind of signals to be analyzed with at least
one member of each class (i.e., Cohen’s class, the hy-
perbolic class, the affine class, etc., see Boudreaux-
Bartel, 1996) to check for auto term preservation and
cross term removal in the particular application.

Algorithm

In summary, the concrete steps that we propose to
detect activation in neurophysiological signals are:

1) Choose a time frequency representation and tune
its parameter with a few signals to achieve ade-
quate discrimination of the basic elementary
components. Note that this step is not needed for
each individual data set but for a given experi-
mental design.

2) Compute the preselected time frequency repre-
sentation for each signal.

3) Compute the Renyi entropies of order three us-

Figure 2.
Saturation values of the RE vs. atoms separation: The curves
reflect the RE value estimated for different distances between the
gaussian atoms when the Morlet scalogram is used. Two normal-
ized frequencies are shown (0.01 and 0.04).
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ing equation (3) for each of the TFRs of the pro-
cessed signals.

A Matlab toolbox developed by the Digital Signal
Processing group from the Rice University comprising
a large number of TFRs as well as a subroutine to
compute the Renyi entropy is freely available on the
Web (www-isis.enst.fr/Applications/tftb/iutsn.univ-
nantes.fr/auger/tftb.html).

Measuring the complexity of neurophysiological
signals

In this section we describe the results obtained in
the classification of signals from noise using the RE in
three types of neurophysiological signals. This analy-
sis has two goals: 1) Demonstrate that this method
provides results comparable to those obtained by
means of more standard techniques that require stron-
ger a priori assumptions about the signals and 2)
Illustrate that the same analysis procedure leads to
reasonable results for signals arising from the diverse
neuroimaging techniques commonly used nowadays.

The whole analysis was carried out using the MAT-
LAB time frequency toolbox [Auger et al., 1996] and
all the signals were analyzed using the Morlet scalo-
gram. After some numerical simulations we decided
for the default parameters reported in the toolbox in
the computation of the scalogram. The RE of order
three was subsequently calculated using the same
toolbox.

Analyzing fMRI signals

A variety of methods for analyzing fMRI signals in
the time or the frequency domain have been proposed
in the last few year [see e.g. Bandettini et al., 1993;
Baker et al., 1994; Worsley and Friston, 1995; Xiong et
al., 1996; Lange and Zeger, 1997; Ruttimann et al., 1998
among others]. Some of these methods rely upon some
model and/or assumption about the fMRI acquisition,
e.g. concerning the stimulus (binary baseline-activa-
tion conditions), or the haemodynamic response.

The blood oxigenation level dependent (BOLD) im-
ages were obtained with a 1.5T Edge system (Picker
Int. Cleveland OH) using single shot echo planar im-
aging (EPI) with the following parameters: echo time
(TE) 5 40 ms, repetition time (TR) 22s, number of
averages 5 1, field of view (FOV) 5 25p16 cm2, matrix
size 128 3 82, number of slices 5 11, slice thickness 5
5 mm with no gap. The acquisition time was 1.1 s. The
experimental task consisted in a sequential right
thumb to right digit opposition.

After motion correction and linear detrend of the
signals we computed the Morlet scalogram for each of
the fMRI time series. Typical patterns found in this
data set for this time frequency representation are
shown in Figure 3. Left panels (a and b) correspond to
regions of no activation and show a more diffuse or
widespread pattern with atoms dispersed over the
whole time frequency plane. In contrast, the TFR of
the time series associated to activated regions shown
in the right panels (c and d) show a consistent regular
pattern at the low frequency band. In the TFR of
organized signals the regular pattern dominates over
the components of the noise. Note also that since the
temporal position of the atoms has no influence on the
RE computation this measure will be robust to differ-
ent haemodynamic delays at different sites or to non
periodic fMRI signals likely to arise in event related
fMRI paradigms.

In figure 4 we represent eight fMRI signals with
their corresponding RE values at the top of each sig-
nal. The four signals at the left column are signals with
low linear correlation coefficient (CC , 0.5) with a
preselected reference vector [Bandettinni, 1993] while
the ones in the right were classified as signals reflect-
ing activation (CC . 0.7) on the same basis. Exact
values for the CC for each signal are given at the figure
legend. Signals on the right also correspond to brain
sites known to be activated by the functional motor
task, i.e., they are located on the left primary motor
cortex.

For this data set, the Renyi entropy values showed a
clear gap between activation and no activation inde-
pendently of the amplitude of the responses. The ap-
pealing aspects in this analysis which contrast with
the comparison with a preselected reference vector are
twofold: 1) There is no need to guess or model such a
reference vector since the classification is based on the
counting of the number of elementary components
and 2) The method can be applied to experiments
where sequences of on-off conditions are not available.

Still, in the whole analysis of a fMRI (not discussed
here) statistical methods will probably be needed to
set the threshold between signals and noise (as done in
correlation analysis) if a clear gap as the one observed
in this example does not appear.

Analyzing intracranial ERPs

Intracranial ERPs were obtained from 94–100 re-
cording sites of two epileptic patients (A.M. and N.B.).
The patients had subdural grids or strips implanted on
their left hemispheres as part of presurgical diagnostic
investigations including electrical cortical stimulation
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to map brain functions. After informed consent had
been obtained, both patients participated in a study on
visuomotor integration. As a part of this study pa-
tients performed simple unimanual index finger re-
sponses to black dots, which were presented every 5–6
sec for 60 msec in random order either to the left or to
the right of a central fixation cross on a gray computer
screen. Here two conditions were further evaluated: 1)
Right visual field stimulation, right hand response
(RR) 2) Left visual field stimulation, right hand re-
sponse (LR). After having performed a training session,
NB was tested in 80 trials per condition and AM in 60.

The EEG was recorded continuously with a sam-
pling rate of 190 Hz (AM) or 200 Hz (NB) in a bipolar
montage, bandpass 0.1–100 Hz. EEG was analyzed
off-line and EEG epochs (100 ms before and 500 ms
after stimulus onset) were computed and averaged
after artifact rejection. Averages were later bandpass

filtered (Butterworth) between 1 and 50 Hz. The motor
responses recorded with a response key device were
situated within the time window of analysis. Mean
reaction times were 352.4 6 76 ms for NB and 257 6 47
ms for AM.

For each averaged signal, we computed first the
scalogram and then the Renyi entropy of order three
[Auger et al., 1996]. Figure 5 shows the plot of the
values of the Renyi’s number superimposed over the
grid or stripes in the individual MRIs of the two
patients. The darker the region the lower the RE. The
regions with the lowest REs were encircled to outline
the sites where the most organized responses ap-
peared. For surgical reasons the grid had to be ori-
ented horizontally in NB and vertically in AM. In
Figure 4b we display the results of the electrical cor-
tical stimulation. The different symbols represent the
brain sites from which visual illusions, right hand

Figure 3.
Morlet scalogram (a TFR) for fMRI traces arising at non activated brain areas (3a and 3b) and
activated areas (3c and 3d). Note the diffuse pattern in the non activated areas which contrast with
the regular one found in the right panel.
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somato-sensory phenomena or right hand movements
were elicited. These areas were expected to be acti-
vated during the performance of the simple visuomo-
tor reaction time task.

In line with these expectations we found that the
regions with highest organized signals in terms of RE
correspond for both patients to the contacts over mo-
tor and sensory motor areas, and for one patient (NB)
to contacts over visual areas. No highly organized
signals are observed over the visual areas of AM.
However, these contacts lie more anterior than the
visual ones in NB, and are thus likely to cover higher
order visual cortex not necessarily engaged in visual
information processing in this simple task.

Analyzing time series estimated by ELECTRA

While fMRI is able to detect functional activation
with excellent spatial resolution, this technique lacks

the capability to track neural events at the millisec-
onds level. Temporal evolution of such events can be
traced by electrophysiological techniques such as
EEG, ERP or MEG which are nonetheless unable to
provide accurate spatial localization. Therefore, there
is an increasing tendency to combine both neuroim-
aging techniques. Such combination generally re-
quires the solution of the electromagnetic inverse
problem either using spatio temporal source models
or distributed inverse solutions.

One aspect that has somehow limited the combina-
tion of fMRI and EEG/MEG inverse solutions is that
the relationship between hemodynamic responses and
underlying electrophysiological events is not yet
clearly established. It is however reasonable to assume
that fMRI images provide a coarse temporal average
of electrophysiological events. One manner to further
assess this hypothesis is to compare for similar exper-
iments fMRI images with temporal averages of intra-

Figure 4.
fMRI signals and estimated Renyi entropies for them. The left inset shows the fMRI traces classified
as noise by classical correlation coefficient analysis (CC values from top to bottom are 0.04, 0.32,
0.46 and 0.39 respectively). On the right, signals classified as reflecting activation (CC are 0.76, 0.72,
0.76, 0.72), are shown.
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cranial recordings or distributed inverse solutions.
While intracranial recordings are usually restricted to
a few brain sites in pathological brains, the results of
inverse solutions are not always reliable especially in
terms of the estimated amplitudes of the deeper
sources. Recent simulations have suggested that the
temporal courses of the generators tend to be more
reliably estimated (except for an amplitude factor)
than the instantaneous amplitude map [Grave de Per-
alta et al., 2000]. This reason speaks in favor of search-
ing for methods to analyze the estimated signals in
terms of their temporal organization rather than rely-
ing on the instantaneous maps. Obviously the meth-
ods to analyze these time series should not depend
upon a scale factor which is insured here by the use of
equation (3).

We concretely propose to compare fMRI results
with the images obtained by determining the traces of
the estimated inverse solution which show a consis-
tent activation over time. Activation will be measured
trough the Renyi entropy. For simplicity we use a
recently developed distributed inverse solution coined
ELECTRA [Grave de Peralta and Gonzalez, 1999;
Grave de Peralta et al., 2000] which restricts the source
model to the kind of currents that can be actually
detected by scalp electrodes. Besides it’s mathematical
properties, ELECTRA is particularly appealing for the
analysis described here because it is the first inverse

solution that attempts to estimate the three dimen-
sional potential distribution inside the human brain
such as the one provided by implanted intracranial
electrodes. In this sense ELECTRA’s results can be
compared with those measured experimentally and all
procedures employed to analyze these traces, as the
one proposed in this paper, can be applied.

In Figure 6 we present an example of application of
the RE to the detection of signals in the potentials
estimated by ELECTRA in a simple visual task. In the
experimental protocol, 41 channel evoked potentials
(EP) were recorded in 25 healthy subjects. Checker-
board reversal stimuli (500 ms) were presented to the
left, the center or the right visual field. The mean
average response over subjects was computed and
ELECTRA solution was obtained for this grand mean
data using an spherical volume conductor model of
the head.

Figure 6a and b show the 3-dimensional RE maps
for the right and central visual field stimulation, re-
spectively. The sites with the most organized re-
sponses (lower RE) are shown. Consistent with the
basic anatomical, electrophysiological and clinical
knowledge [Regan, 1989], the lateralized stimuli
(right) mainly led to activation of the occipital areas
contralateral to the stimulated field, while full-field
stimulation induced symmetrical activation of the oc-
cipital areas of both hemispheres.

Figure 5.
Estimated response complexity in a visuo motor task in two
epileptic patients. (a) Calculated Renyi’s entropies superimposed
on the individual MRIs of the two epileptic patients. The regions
with the lowest NNREs (darkest values) are encircled to outline
the sites where the most organized and strongest responses

appeared. (b) Results of the electrical cortical stimulation. The
different symbols represent the brain sites from which visual or
right hand somato-sensory illusions or right hand movements
were elicited.
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DISCUSSION

We have described and illustrated here an approach
to differentiate activation from noise in neurophysio-
logical signals of diverse origins with minimal as-
sumptions. This approach uses as a measure of acti-
vation the RE calculated over the basis of the time
frequency representation of the measured signals. Al-
though many additional theoretical properties of the
RE are discussed in Baraniuk et al, (submitted), we
prefer to discuss here those merits, pitfalls and caveats
of more practical relevance. It should not be neglected
that the lack of uniqueness in this definition of com-
plexity given its dependence of the selected TFR is an
obvious theoretical flaw of this method. More relevant
on practical grounds are the presence of cross-compo-
nents or interference terms in the TFR which affect the
counting property of the RE. Also amplitude and
phase differences between the components of the sig-
nal alter the asymptotic saturation levels as illustrated
in Figure 2. This is why the selection of an adequate
TFR, able to extract the relevant features of the signal
to be processed with a minimum of interference terms,
is a crucial aspect in the analysis proposed. Probably
even more important than the selection of the TFR
itself is the adequate tuning of its parameters taking
into account the unavoidable trade off between time
and frequency resolution. On one hand, a good time
resolution requires a short temporal analysis window;
on the other hand a good frequency resolution re-

quires a long time window. Unfortunately both
wishes cannot be simultaneously granted. In the par-
ticular case of ERPs and fMRI signals it can be as-
sumed that their frequency changes over time are not
very fast and thus the time resolution is not as impor-
tant as the frequency resolution [McGillem and
Aunon, 1987]. Consequently, in this case a long tem-
poral window can be chosen which might not be
adequate for other types of data.

It is also relevant that this measure of complexity is
closely related to our intuitive notion of organization
of the signals. If the TFR adequately separates the
elementary components of the signals in the time fre-
quency plane, then this measure reflects more or less
adequately the number of components. Usually, the
more peaky time frequency representation of signals
comprised of small numbers of elementary compo-
nents yield small entropy values (small Renyi num-
bers), while the diffuse TFRs of more complicated
signals yield large entropy values (large Renyi num-
bers).

One could also wonder if other measures derived
from the TFR of a signal such as moment-based mea-
sures, e.g., time-bandwidth and its generalizations to
second order time frequency moments could replace
the RE as measures of complexity. A simple example
described by Baraniuk (submitted) shows that this is
not the case. Let’s consider a signal comprised of two
components of compact support, i.e., which are zero
outside a certain region of the time frequency plane.
While the time-bandwidth product increases without
bound with separation, the complexity does not in-
crease once the components become disjoint as illus-
trated in the basic theory section.

Alternative measures of complexity have already
been applied to the analysis of electrophysiological
signals [Wackermann et al., 1993; Tononi et al., 1996;
Aftanas et al., 1998; Micheloyannis et al., 1998; Weber
et al., 1998 among others]. Most of these measures are
derived in the context of non linear analysis and chaos
[Cerutti et al., 1996] and are difficult to apply to gen-
eral neurophysiological signals. The main reason is
that an adequate estimate of the complexity requires a
large number of samples, i.e., either signals sampled at
a very high sampling frequency or very long periods.
These conditions are not always fulfilled in practice.
Additional difficulties of using non linear analysis
techniques are described in Nunes [1995].

The applications described and illustrated here
merely scratch the surface of potential applications of
TFRs or RE for the analysis of brain signals. An inter-
esting potential application is to exploit the “analogy”
TFR and probability density for the calculation of the

Figure 6.
The lowest RE values for the time series estimated by ELECTRA
in a simple visual task. Top: Right visual field stimulation and
Bottom: Central visual field stimulation. Only the four lower slices
of the solution space are shown.
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average amount of mutual information, a measure of
the interdependence between time series applicable to
the study of information transmission between brain
areas [Mars and Da Silva, 1987]. A generalization of
the Shannon measure known as the Gelfand and Ya-
glom measure have been already used in the EEG/
ERP literature to study the structure of brain interde-
pendencies [Mars and Da Silva, 1987, for a review]. An
understanding of the principles governing the behav-
ior of epileptiform activity, where the complexity is
reported to decrease preceding the seizure [Lehnertz
et al., 1997; Weber et al., 1998] or the analysis of
changes and transitions of the brain electric activity
before and after drugs intake can be obtained from the
application of the methods described here.

CONCLUSIONS

In this paper we describe a measure of the complex-
ity of neurophysiological signals: the Renyi entropy.
This measure is conceptually simple to understand
and as illustrated in the analysis of several types of
neurophysiological signals, it corresponds well with
our visual notion of complexity. In contrast with mea-
sures derived in the framework of non linear analysis
this measure does not require long time series. Worthy
to note is that this method implies nearly no assump-
tions about the underlying processes or the recorded
signals, which makes this measure of complexity ro-
bust and generally applicable. All these properties are
essential for the analysis of the diverse signals arising
from different modalities of brain imaging which de-
scribe very different neurophysiological processes.

Our goal with this paper is not to describe an ap-
proach able to access information invisible to other
methods. We aim instead to describe a tool to extract
the same information with less assumptions. It is im-
portant to realize that most of the standard methods
available to distinguish signals from noise imply re-
quirements such as gaussianity or stationarity, de-
mand lengthy time series or presuppose some a priori
knowledge about the underlying neurophysiological
process. Many of these hypothesis do not necessarily
hold for each neuroimaging modality or for each ex-
perimental paradigm, and their validity is hardly ever
tested in practice. Therefore, a method like the one
proposed here, general enough to handle a multiplic-
ity of neurophysiological signals without needing as-
sumptions about them, should not be disregarded.
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