226 research outputs found

    On the calibration of the relation between geometric albedo and polarimetric properties for the asteroids

    Get PDF
    We present a new extensive analysis of the old problem of finding a satisfactory calibration of the relation between the geometric albedo and some measurable polarization properties of the asteroids. To achieve our goals, we use all polarimetric data at our disposal. For the purposes of calibration, we use a limited sample of objects for which we can be confident to know the albedo with good accuracy, according to previous investigations of other authors. We find a new set of updated calibration coefficients for the classical slope - albedo relation, but we generalize our analysis and we consider also alternative possibilities, including the use of other polarimetric parameters, one being proposed here for the first time, and the possibility to exclude from best-fit analyzes the asteroids having low albedos. We also consider a possible parabolic fit of the whole set of data.Comment: Accepted by MNRA

    Taxonomy of asteroid families among the Jupiter Trojans: Comparison between spectroscopic data and the Sloan Digital Sky Survey colors

    Get PDF
    We present a comparative analysis of the spectral slope and color distributions of Jupiter Trojans, with particular attention to asteroid families. We use a sample of data from the Moving Object Catalogue of the Sloan Digital Sky Survey, together with spectra obtained from several surveys. A first sample of 349 observations, corresponding to 250 Trojan asteroids, were extracted from the Sloan Digital Sky Survey, and we also extracted from the literature a second sample of 91 spectra, corresponding to 71 Trojans. The spectral slopes were computed by means of a least-squares fit to a straight line of the fluxes obtained from the Sloan observations in the first sample, and of the rebinned spectra in the second sample. In both cases the reflectance fluxes/spectra were renormalized to 1 at 6230 A˚\textrm{\AA}. We found that the distribution of spectral slopes among Trojan asteroids shows a bimodality. About 2/3 of the objects have reddish slopes compatible with D-type asteroids, while the remaining bodies show less reddish colors compatible with the P-type and C-type classifications. The members of asteroid families also show a bimodal distribution with a very slight predominance of D-type asteroids, but the background is clearly dominated by the D-types. The L4 and L5 swarms show different distributions of spectral slopes, and bimodality is only observed in L4. These differences can be attributed to the asteroid families since the backgraound asteroids show the same slope distribtuions in both swarms. The analysis of individual families indicates that the families in L5 are taxonomically homogeneous, but in L4 they show a mixture of taxonomic types. We discuss a few scenarios that might help to interpret these results.Comment: 20 pages, 15 figures, 2 table

    The first confirmation of V-type asteroids among the Mars crosser population

    Get PDF
    The Mars crossing region constitutes a path to deliver asteroids from the Inner Main Belt to the Earth crossing space. While both the Inner Main Belt and the population of Earth crossing asteroids contains a significant fraction of asteroids belonging to the V taxonomic class, only two of such V-type asteroids has been detected in the Mars crossing region up to now. In this work, we searched for asteroids belonging to the V class among the population of Mars crossing asteroids, in order to support alternative paths to the delivery of this bodies into the Earth crossing region. We selected 18 candidate V-type asteroids in the Mars crossing region using observations contained in the Sloan Digital Sky Survey Moving Objects Catalog. Then, we observed 4 of these candidates to take their visible spectra using the Southern Astrophysical Research Telescope (SOAR). We also performed the numerical simulation of the orbital evolution of the observed asteroids. We confirmed that 3 of the observed asteroids belong to the V class, and one of these may follow a path that drives it to an Earth collision in some tens of million years

    Transneptunian objects and Centaurs from light curves

    Full text link
    We analyze a vast light curve database by obtaining mean rotational properties of the entire sample, determining the spin frequency distribution and comparing those data with a simple model based on hydrostatic equilibrium. For the rotation periods, the mean value obtained is 6.95 h for the whole sample, 6.88 h for the Trans-neptunian objects (TNOs) alone and 6.75 h for the Centaurs. From Maxwellian fits to the rotational frequencies distribution the mean rotation rates are 7.35 h for the entire sample, 7.71 h for the TNOs alone and 8.95 h for the Centaurs. These results are obtained by taking into account the criteria of considering a single-peak light curve for objects with amplitudes lower than 0.15 mag and a double-peak light curve for objects with variability >0.15mag. The best Maxwellian fits were obtained with the threshold between 0.10 and 0.15mag. The mean light-curve amplitude for the entire sample is 0.26 mag, 0.25mag for TNOs only, and 0.26mag for the Centaurs. The amplitude versus Hv correlation clearly indicates that the smaller (and collisionally evolved) objects are more elongated than the bigger ones. From the model results, it appears that hydrostatic equilibrium can explain the statistical results of almost the entire sample, which means hydrostatic equilibrium is probably reached by almost all TNOs in the H range [-1,7]. This implies that for plausible albedos of 0.04 to 0.20, objects with diameters from 300km to even 100km would likely be in equilibrium. Thus, the great majority of objects would qualify as being dwarf planets because they would meet the hydrostatic equilibrium condition. The best model density corresponds to 1100 kg/m3.Comment: 21 pages, 8 figures. Astronomy & Astrophysics, in pres

    A mid-term astrometric and photometric study of Trans-Neptunian Object (90482) Orcus

    Get PDF
    From CCD observations of a fixed and large star field that contained the binary TNO Orcus, we have been able to derive high-precision relative astrometry and photometry of the Orcus system with respect to background stars. The RA residuals of an orbital fit to the astrometric data revealed a periodicity of 9.7+-0.3 days, which is what one would expect to be induced by the known Orcus companion. The residuals are also correlated with the theoretical positions of the satellite with regard to the primary. We therefore have revealed the presence of Orcus' satellite in our astrometric measurements. The photocenter motion is much larger than the motion of Orcus around the barycenter, and we show here that detecting some binaries through a carefully devised astrometric technique might be feasible with telescopes of moderate size. We also analyzed the system's mid-term photometry to determine whether the rotation could be tidally locked to the satellite's orbital period. We found that a photometric variability of 9.7+-0.3 days is clear in our data, and is nearly coincident with the orbital period of the satellite. We believe this variability might be induced by the satellite's rotation. There is also a slight hint for an additional small variability in the 10 hr range that was already reported in the literature. This short-term variability would indicate that the primary is not tidally locked and therefore the system would not have reached a double synchronous state. Implications for the basic physical properties of the primary and its satellite are discussed. From angular momentum considerations we suspect that the Orcus satellite might have formed from a rotational fission. This requires that the mass of the satellite would be around 0.09 times that of the primary, close to the value that one derives by using an albedo of 0.12 for the satellite and assuming equal densities for both objects.Comment: in Press at A&

    The population of Comet candidates among quasi-Hilda objects revisited and updated

    Full text link
    In this paper, we perform a dynamical study of the population of objects in the unstable quasi-Hilda region. The aim of this work is to make an update of the population of quasi-Hilda comets (QHCs) that have recently arrived from the Centaurs region. To achieve our goal, we have applied a dynamical criteria to constrain the unstable quasi-Hilda region that allowed us to select 828 potential candidates. The orbital data of the potential candidates was take from the ASTORB database and we apply backward integration to search by those that have recently arrived from the outer regions of the Solar System. Then we studied the dynamical evolution of the candidates from a statistical point of view by calculating the time-averaged distribution of a number of clones of each candidate as a function of aphelion and perihelion distances. We found that 47 objects could have been recently injected into the inner Solar System from the Centaur or transneptunian regions. These objects may have preserved volatile material and are candidates to exhibit cometary activity.Comment: 7 pages 3 figure

    Observation of light echoes around very young stars

    Full text link
    The goal of the paper is to present new results on light echoes from young stellar objects. Broad band CCD images were obtained over three months at one-to-two week intervals for the field of NGC 6726, using the large field-of-view remotely-operated telescope on top of Cerro Burek. We detected scattered light echoes around two young, low-amplitude, irregular variable stars. Observations revealed not just one, but multiple light echoes from brightness pulses of the T Tauri star S CrA and the Herbig Ae/Be star R CrA. Analysis of S CrA's recurring echoes suggests that the star is located 138 +/- 16 pc from Earth, making these the closest echoes ever detected. The environment that scatters the stellar light from S CrA is compatible with an incomplete dust shell or an inclined torus some 10,000 AU in radius and containing \sim 2×1032 \times 10^{-3} M_{\sun} of dust. The cause of such concentration at \sim 10,000AU from the star is unknown. It could be the remnant of the envelope from which the star formed, but the distance of the cloud is remarkably similar to the nominal distance of the Oort cloud to the Sun, leading us to also speculate that the dust (or ice) seen around S CrA might have the same origin as the Solar System Oort cloud.Comment: A&A, in press Received: 16 March 2010 / Accepted: 01 June 201

    Fotometría CCD de estrellas NSV

    Get PDF
    Como parte de un programa destinado a efectuar un control estricto de los catálogos relacionados con estrellas variables (confirmadas o sospechosas), es que hemos iniciado la observación sistemática de estrellas NSV (New Suspected Variables) ubicadas en el hemisferio sur. El proyecto pretende confirmar definitivamente la supuesta variabilidad de dichas estrellas, mejorar cartas de identificación y suministrar, además, información astrométrica precisa.Asociación Argentina de Astronomí

    IUCN's encounter with 007: safeguarding consensus for conservation

    Get PDF
    A controversy at the 2016 IUCN World Conservation Congress on the topic of closing domestic ivory markets (the 007, or so-called James Bond, motion) has given rise to a debate on IUCN's value proposition. A cross-section of authors who are engaged in IUCN but not employed by the organization, and with diverse perspectives and opinions, here argue for the importance of safeguarding and strengthening the unique technical and convening roles of IUCN, providing examples of what has and has not worked. Recommendations for protecting and enhancing IUCN's contribution to global conservation debates and policy formulation are given
    corecore