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ABSTRACT
We present a new extensive analysis of the old problem of finding a satisfactory calibration
of the relation between the geometric albedo and some measurable polarization properties
of the asteroids. To achieve our goals, we use all polarimetric data at our disposal. For the
purposes of calibration, we use a limited sample of objects for which we can be confident to
know the albedo with good accuracy, according to previous investigations of other authors.
We find a new set of updated calibration coefficients for the classical slope–albedo relation,
but we generalize our analysis and we consider also alternative possibilities, including the use
of other polarimetric parameters, one being proposed here for the first time, and the possibility
to exclude from best-fitting analyses the asteroids having low albedos. We also consider a
possible parabolic fit of the whole set of data.
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1 IN T RO D U C T I O N

The geometric albedo of a planetary body illuminated by the Sun is
the ratio of its brightness observed at zero phase angle (i.e. measured
in conditions of ideal solar opposition)1 to that of an idealized
flat, Lambertian2 disc having the same cross-section. The word
‘albedo’ comes from the Latin word Albus, which means ‘white’.
According to its definition, therefore, the geometric albedo is the
parameter used to indicate whether the surface of a given object
illuminated by the Sun appears to be dark or bright. The albedo is
wavelength dependent. In planetary science, the geometric albedo
has been traditionally measured in the standard Johnson V band

� Partly based on observations carried out at the Complejo Astronómico
El Leoncito, operated under agreement between the Consejo Nacional de
Investigaciones Cientı́ficas y Técnicas de la República Argentina and the
National Universities of La Plata, Córdoba, and San Juan.
† E-mail: cellino@oato.inaf.it
1 The phase angle is the angle between the directions to the Sun and to the
observer as seen from the object.
2 That is, a surface having a luminous intensity directly proportional to the
cosine of the angle between the observer’s line of sight and the surface
normal (emission angle). A Lambertian surface exhibits a uniform radiance
when viewed from any angle, because the projection of any given emitting
area is also proportional to the cosine of the emission angle.

centred around 0.55 µm, and it is usually indicated in the literature
using the symbol pV.

The geometric albedo is a parameter of primary importance.
Being an optical property of a sunlight-scattering surface, it must
depend on composition, as well as on other properties characteriz-
ing the surface at different size scales, including macrotexture and
microtexture and porosity. All these properties are the product of
the overall history of an object’s surface, and are determined by
the interplay of phenomena as complex as collisions, local crater-
ing, microseismology, space weathering, thermal phenomena, just
to mention a few relevant processes. The fine structure and com-
position of the surface affects properties of the optical emission
which determine the results of many observing techniques, includ-
ing photometry and spectroscopy. It is particularly important in
determining the state of polarization of the scattered sunlight in
different illumination conditions, this being the main subject of this
paper.

The geometric albedo is also a fundamental parameter when one
wants to determine the size of a small Solar system body, having
at disposal photometric measurements at visible wavelengths. In
particular, a measurement of brightness in V light is not sufficient
to discriminate between a large, dark object and a small, bright one,
if the albedo is unknown.

Geometric albedo should not be confused with the so-called Bond
(or spherical) albedo. The Bond albedo is the fraction of incident
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sunlight that is scattered in all directions and at all wavelengths. The
Bond albedo is needed to estimate what fraction of incident radiation
is actually absorbed, and therefore contributes to the energy balance
of the body determining its temperature. It is possible to define the
Bond albedo at any given wavelength λ, e.g. AV for that at the V band
of the Johnson UBV system, as Aλ = qλpλ (Morrison & Lebofsky
1979), where pλ is the geometric albedo at wavelength λ, and qλ

is the so-called phase integral, first defined by Russel (1916) as
the integral of the directionally scattered flux, integrated over all
directions,

qλ = 2
∫ π

0
�(λ, α) sin αdα,

where �(λ, α) is the disc-integrated brightness of the object at phase
angle α. Unfortunately, a determination of the phase integral, which
requires in principle many measurements of the scattered sunlight
at visible wavelengths obtained in different illumination conditions,
is very hard to achieve, and is seldom available in practice.

Asteroid sizes and albedos have been historically determined
mostly by means of measurements of the thermal flux at mid-IR
wavelengths (the so-called thermal radiometry technique), generally
using space-based platforms like the IRAS and, more recently, the
WISE (Masiero et al. 2011) and Akari (Usui et al. 2013) satellites.
At thermal IR wavelengths the received flux depends primarily on
the size of the emitting object,3 and only weakly on the albedo. In
particular, the Bond albedo determines the fraction of the incident
sunlight which is absorbed by the surface and is available to raise
the temperature of the body. The temperature, in turn, determines
the spectrum of the thermal emission in the IR. Since the Bond
albedo of the asteroids is usually fairly low (in general well below
30 per cent), most of the incident solar flux is actually absorbed by
the body, and the intensity of the thermal flux turns out to be mostly
dependent on the size, whereas the dependence upon relatively small
differences in albedo is much weaker. Moreover, the computation
of the geometric albedo from the Bond albedo, as mentioned above,
would require a knowledge of the phase integral, which is essentially
unknown in the vast majority of cases. As a consequence, it is
not really possible to solve simultaneously for size and albedo in
practical applications of the thermal radiometry technique. What
is normally done is to derive the size from thermal IR data alone
(assuming also that the objects have spherical shapes), and then
determine the geometric albedo by using the known relation

log(D) = 3.1236 − 0.2H − 0.5 log(pV ), (1)

where D is the diameter expressed in km (supposing that the object
is spherical), H is the absolute magnitude and pV is the geometric
albedo. To do so properly, at least some V magnitude measurements
obtained during the same apparition4 in which the thermal flux of
the object is measured, would be needed, in order to derive from
them a reliable value of the absolute magnitude H. Unfortunately, in
the real world no measurements of the V flux are really done in ther-
mal radiometry campaigns, and H is directly taken from available
catalogues. In turn, these H values are derived from V magnitude
data (often of quite poor photometric quality), mostly obtained in
different observing circumstances, and using a photometric model

3 And on the temperature distribution across its surface, including also a
contribution from the fraction of the body facing the observer but not illu-
minated by the Sun, when observing at non-zero phase angle.
4 The apparition of an asteroid is the interval of time (several weeks) before
and after each solar opposition epoch, when the object becomes visible to
the observers.

of the variation of V magnitude as a function of phase angle. As
mentioned by several authors, (see, for instance, Muinonen et al.
2010), the magnitude–phase relation for asteroids is described by
means of parameters which are generally poorly known, and this
introduces further errors in the geometric albedo determination.

In summary, it is difficult to obtain very accurate determinations
of the geometric albedo of an asteroid based on thermal radiome-
try measurements. Based on the relation described by equation (1),
the relative uncertainty on the albedo should be twice the relative
error on the size, in ideal conditions. In practice, values as high as
50 per cent in geometric albedo, or even more for small and faint
objects, are common even when the relative error on the size is of
the order of 10 per cent.5 The best results require measurements of
the thermal flux to be obtained at different wavelengths in the ther-
mal IR, an acceptable knowledge of the variation of V magnitude
with phase, and detailed thermophysical models which can be de-
veloped when a wealth of physical data is available from different
observing techniques (including a knowledge of the shape and spin
axis orientation).

In this paper, we focus on another possible option to obtain esti-
mates of the geometric albedo of asteroids, or other atmosphereless
Solar system bodies. This is based on measurements of the state
of polarization of the sunlight scattered by the surface in different
illumination conditions, and on the existence of empirical relations
between geometric albedo and polarimetric properties. Our present
analysis is mainly devoted to summarize the state of the art of this
application of asteroid polarimetry, and to provide one or more up-
dated forms of the albedo – polarization relationship, sufficiently
accurate to be used in practical applications of asteroid polarime-
try by the largest possible number of researchers in the future. We
analyse the current observational evidence taking into account an
extensive data set available in the literature,6 including also observa-
tions carried out mostly at the Complejo Astronomico El Leoncito
(San Juan, Argentina), that have been published only recently (Gil
Hutton, Cellino & Bendjoya 2014). The derivation of the albedo
from polarimetric data is a challenging problem which has been
open for a long time. In this paper, we take into account both tradi-
tional approaches as well as new possible developments suggested
by the data at our disposal.

2 A STEROI D POLARI METRI C DATA

Classical asteroid polarimetry consists of measurements of the lin-
ear polarization of the light received from asteroids observed at
different phase angles. The observations give directly the degree
of linear polarization and the position angle of the plane of po-
larization. This is usually measured with respect to the orientation
of the direction perpendicular to the scattering plane, namely the
plane containing the Sun, the observer and the target. According to
elementary physical considerations (Fresnel reflection) one should
expect the scattered sunlight emerging from the surface of an atmo-
sphereless planetary body to be linearly polarized along the direc-
tion perpendicular to the scattering plane. This expectation is only

5 This can be seen by plotting together for a comparison the albedos found
for many thousands of asteroids observed by both the WISE and Akari
satellites.
6 Including the polarimetric data available at the NASA Planetary Data
System at the URL address http://pds.jpl.nasa.gov/ (files maintained by
D.F. Lupishko and I.N. Belskaya), and the data published by Gil-Hutton
& Cañada-Assandri (2011), Gil-Hutton & Cañada-Assandri (2012) and
Cañada-Assandri, Gil-Hutton & Benavidez (2012).
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partly confirmed by the observations. The asteroid light at visible
wavelengths turns out to be, as expected, in a state of partial linear
polarization, but in different observing circumstances the plane of
linear polarization is found to be either perpendicular (as expected)
or parallel (and this is a priori unexpected) to the scattering plane. It
is therefore customary in asteroid polarimetry to express the degree
of polarization as the ratio of the difference of intensity of light
beam component I⊥ having the electric vector aligned along the
plane perpendicular to the scattering plane minus the intensity I‖
of the component having the electric vector aligned parallel to that
plane, divided by the sum of the two intensities. This parameter is
usually indicated as Pr in the literature and is given by

Pr = (I⊥ − I‖)

(I⊥ + I‖)
.

According to its definition, the module of Pr is the degree of
linear polarization of the received light as explained in elementary
textbooks in physics (because I⊥ and I‖ are found to be coincident
with Imax and Imin measured through a polaroid), but the sign of Pr

can be either positive or negative, depending on whether Imax corre-
sponds to I⊥, as should be expected based on elementary physics, a
situation normally referred to as ‘positive polarization’. When Imax

is found to correspond to I‖, Pr becomes negative, and this situation
is called ‘negative polarization’.

It is important to note that we will always use the Pr parameter
throughout this paper every time we will refer to asteroid polarimet-
ric measurements. Its value will always be expressed (and plotted in
our figures) in per cent. We also note that asteroids are not strongly
polarized objects. The degree of linear polarization turns out to
be usually below 2 per cent. In asteroid polarimetry, by measur-
ing Pr at different epochs, corresponding to different values of the
phase angle, it is possible to obtain the so-called phase–polarization
curves. Some examples are shown in Fig. 1. Many data plotted in
this figure have been obtained during several observing campaigns
carried out at CASLEO (Complejo AStronomico el LEOncito) in
the province of San Juan (Argentina), using the 2.15 m Sahade
telescope (Gil Hutton et al. 2014). From Fig. 1, it is easy to see
that asteroids belonging to very different taxonomic classes tend
to exhibit phase–polarization curves which share in general terms
a same kind of general morphology, but with differences which
can be easily seen, and represent some classical results of asteroid
polarimetry (see also Penttila et al. 2005).

In particular, all the curves are characterized by a ‘negative polar-
ization branch’, extending over an interval of phase angles between
0◦ up to a value α0 which is commonly found to be around 20◦

of phase (‘inversion angle’). The extreme value of polarization in
the negative branch is traditionally indicated as Pmin. Around the
inversion angle the trend of Pr as a function of phase angle is mostly
linear, and the slope of this linear increase is commonly indicated as
h. The interval of phase angles which is accessible to Earth-based
observers extends in the best cases little over 30◦ when observing
main belt asteroids (the possible observing circumstances being de-
termined by the orbital elements of the objects). The interval of
possible phase angles extends up to much larger values in the case
of objects which can be observed much closer to the Earth, as in the
case of many near-Earth asteroids.

3 H OW TO CALIBRATE ANY POSSIBLE
A L B E D O – P O L A R I Z AT I O N R E L AT I O N

From Fig. 1, it is evident that, at the same phase angle, different
objects exhibit different degrees of polarization. Some objects are

Figure 1. Examples of phase–polarization curves obtained for four large
main belt asteroids belonging to different taxonomic classes: top left: the
dwarf planet (1) Ceres (G-class); top right: (4) Vesta (V-class); bottom left:
(6) Hebe (S-class); bottom right: (21) Lutetia (for a long time considered to
belong to the old M class, now included in the X complex). Open symbols
refer to data available in the literature. Full symbols in the plots identify
observations obtained at the CASLEO observatory. Most of them have been
published only recently (Gil Hutton et al. 2014). The best-fitting lines cor-
respond to the exponential–linear relation discussed in Section 5.

more polarized than others. This can be interpreted in very gen-
eral terms as being a consequence of the classical Umov effect
(Umov 1905), which states that the degree of polarization tends to
be inversely proportional to the albedo, according also to laboratory
experiments.

The task of determining the albedo based on available phase–
polarization curves is important in asteroid science. The founda-
tions have been laid long ago in some classical papers, like Zellner
& Gradie (1976) and Zellner et al. (1977). Since then, several au-
thors have tackled the same problem, with analyses based on new
sets of observations and/or laboratory experiments. The idea is to
determine some suitable relation between the distinctive features of
the phase–polarization curves of some selected sources, and their
albedo, assumed to be known a priori with good accuracy. The
set of calibration objects must also be representative of the whole
population.

We cannot assume a priori that all asteroids (which are a quite
heterogeneous population), must respect a unique relation between
albedo and polarization properties. Only a posteriori can we as-
sess whether it is possible to accurately derive the albedo using a
unique relationship independent on the taxonomic class. The main
task is therefore to find a suitable representation of such a relation
between albedo and polarization, to be tested over the maximum
possible number of calibration objects belonging to different taxo-
nomic classes.

In this respect, one must analyse available polarimetric data for
the largest possible sample of objects having a well-known albedo,
in order to find evidence of some general and satisfactorily accurate
relation between albedo and polarimetric properties. Unfortunately,
it is not so easy to implement this simple approach in practical

MNRAS 451, 3473–3488 (2015)

 at IN
A

F T
orino (O

sservatorio A
strofisico di T

orino) on A
ugust 13, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


3476 A. Cellino et al.

terms. The use of laboratory experiments, based in particular on
polarimetric measurements of meteorite samples, for calibration
purposes seems to be natural, and was adopted in the 70s, but it is
not exempt from problems. There are some technical difficulties,
including the need of observing the specimens at zero phase angle
to measure their albedos, something which is in general not a trivial
task. In a classical paper, Zellner et al. (1977) also mentioned some
problems in correctly assessing the instrumental polarization in the
lab. Another general problem is to ensure that the used meteorite
samples are really representative of the behaviour of asteroids as
they appear to remote observers. Unfortunately, the meteorite sam-
ples have to be treated to reproduce the texture of their asteroid
parent bodies. For instance, Zellner et al. (1977) noted that to find
similarities between the phase–polarization curves of asteroids and
meteorite samples, the latter have to be first crushed, and the way
to do that has consequences on the derived polarization properties.
Moreover, the authors noticed how difficult it is to eliminate from
meteorite samples any source of terrestrial, post-impact alteration.
For all these reasons, starting from the 90s most attempts of cali-
bration of the albedo–polarization relation have been based on the
direct use of asteroid albedo values obtained from other techniques
of remote observation.

Several papers have been based on the idea of using for calibration
purposes some sets of asteroids for which the geometric albedo had
been derived from thermal radiometry observations, mostly con-
sisting of old IRAS measurements, or, more recently, WISE data.
This approach has the advantage of being able to use for calibration
many objects belonging to practically all known taxonomic classes.
There are, however, several problems. First, albedos derived from
thermal IR data are model-dependent. They depend on the choice
of some parameters, which are needed to simulate the distribution
of temperature on the asteroid surface, and the dependence of the
irradiated thermal flux in different directions. Apart from a limited
number of cases, albedo values determined by thermal radiometry
data, particularly for objects for which we have little information
coming from other sources, are simply too inaccurate for the pur-
poses of a robust calibration. This is a consequence of the problems
discussed in Section 1 concerning the general lack of simultaneous
photometric data at visible wavelengths, and the consequent use of
values of absolute magnitude that are affected by large errors. To
add some confusion, in the past the catalogue of IRAS-based as-
teroid albedos changed with time. In particular, the first published
catalogue of IRAS albedo values (Tedesco & Veeder 1992) had
been built using thermal IR data coupled with estimated absolute
magnitudes computed prior the introduction of the (H, G) aster-
oid photometric system. Using these data, Lupishko & Mohamed
(1996) derived a first set of values for the calibration parameters
included in the so-called slope–albedo law (see Section 4). Subse-
quently, a new IRAS albedo catalogue was produced using absolute
magnitudes expressed in the (H, G) system (Tedesco et al. 2002),
and these values were used by Cellino et al. (1999) to derive an al-
ternative calibration of the slope–albedo law. This problem should
be expected to arise again, due to the fact that International As-
tronomical Union (IAU) has recently recommended the use of a
new photometric system (H, G1, G2; see Muinonen et al. 2010),
implying that the albedo catalogues obtained using IRAS, and more
recently, WISE data, should be updated again.

Currently, different authors use different calibrations available in
the literature, including, in addition to those just mentioned above,
also much older calibrations by Zellner, Gehrels & Gradie (1974)
and Zellner et al. (1977), which were mainly based on laboratory
experiments. This is not an ideal situation, and one of the major

goals of this paper is just to provide one or more updated forms of
the albedo–polarization relationship, to be used by most researchers
in the future, depending on the polarimetric data at their disposal.

Masiero et al. (2012) proposed a new kind of calibration based
on different polarimetric parameters and using a sample of 177 as-
teroids for which the albedo has been estimated from WISE thermal
radiometry data. In many cases, the objects were observed by WISE
at fairly large phase angles, and the problem of assigning in these
cases reliable values of corresponding magnitude in the visible is
particularly difficult. As a consequence, in this paper we will also
make a new test of the Masiero et al. (2012) approach, but using a
different sample of objects having albedos not derived from thermal
radiometry data (see Section 6).

Shevchenko & Tedesco (2006) proposed to use for calibration
purposes a limited sample of asteroids for which both the size is
known with extremely high accuracy, and also the absolute mag-
nitude in the visible is well known, being based on large data sets
of available photometric data. As for the size, the most accurate
values are certainly those obtained either in situ by space probes,
or those obtained by accurate observations of stellar occultations.
At least for some of these objects, also the absolute magnitude val-
ues listed in the catalogues can be reasonably reliable, although we
should always remember that the absolute magnitude is not, strictly
speaking, a fixed parameter, but it varies at different epochs, being
dependent on the varying aspect angle of the object. The aspect
angle determines the extent of the cross-section of the illuminated
surface visible by the observer, and varies at different apparitions.
This variation of visible cross-section depends on the overall shape
of the object (it is zero for an ideal sphere) and on the orientation
of the rotation axis.

Limiting our analysis to the best-observed objects, for which the
size and the absolute magnitude are supposed to be well known, the
albedo pV can be derived using the relation between size, albedo
and absolute magnitude (equation 1).

The list of objects with reliable albedo proposed by Shevchenko
& Tedesco (2006) includes 61 objects. Among them, there are some
of the largest and most observed asteroids, including (1) Ceres,
(2) Pallas, (3) Juno and (4) Vesta. We note that in the case of
(4) Vesta, however, we use a different value of albedo, namely
0.35 ± 0.02, based on the most recent, and very accurate value of
size measured in situ by the Dawn probe. The uncertainty in albedo
for this asteroid depends on the fact that the disc-integrated albedo
tends to change at different rotation angles (Cellino et al. 2015).
Many objects of the Shevchenko & Tedesco (2006) list are much
fainter (including some small targets of space missions) and several
have never been observed in polarimetry. In this paper, we follow the
approach indicated by Shevchenko & Tedesco (2006). This does not
mean that we are not aware of some problems: first, we know that
the Shevchenko & Tedesco (2006) object list is now fairly old and
needs an updating. This includes both considering a larger, currently
available set of high-quality stellar occultation data, as well as using
more accurate values of the absolute magnitude, to be computed
according to the new (H, G1, G2) photometric system adopted by
the IAU. We plan to produce an updated and possibly longer list
of calibration targets in the near future, but we postpone this to a
separate paper. In this work, we lay the foundations for any future
analysis taking profit of a larger list of reliable asteroid albedos.
The still limited data base of asteroid polarimetric observations is
for the moment the main limiting factor for the investigations in this
field.

We have long been involved in an observing programme of po-
larimetric observations of asteroids belonging to the Shevchenko &
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Tedesco (2006) list, in order to improve significantly the coverage
of the phase–polarization curves for these objects. So far, we have
been able to obtain decent phase–polarization curves for only a lim-
ited sample of the whole list, taking also into account that some
objects would require the availability of larger telescopes and/or
better detectors, as well as a larger amount of dedicated observing
time. The results presented in this paper, which follow a previous
preliminary analysis published by (Cellino et al. 2012), are already
sufficient to find an updated set of calibration parameters for the
classical form of the slope–albedo law adopted by most authors in
the past. The new data also allow us to explore new possible ways
to express the relation between albedo and polarimetric properties,
which will be probably the future in this field once the data set
of asteroid polarimetric measurements will grow significantly in a
hopefully not-too distant future.

4 T H E C L A S S I C A L A P P ROAC H : T H E
SLOPE-ALBEDO ‘LAW’

In practically all papers devoted in the past to this subject, the
relation between geometric albedo and polarimetric properties has
been assumed to be one of the following ones:

log(pV ) = C1 log(h) + C2 (2)

log(pV ) = C3 log(Pmin) + C4. (3)

In equation (2), which was originally proposed as early as in the 70s
in the first pioneering investigations by B. Zellner and coworkers,
h is the so-called polarimetric slope, namely the slope of the linear
variation of Pr as a function of phase angle, measured at the inversion
angle (see Section 2). In equation (3), the polarimetric parameter is
instead Pmin, namely the extreme value of negative polarization.

Most investigations available in the literature (see, for instance,
Cellino et al. 2012, and references therein), have used equation (2),
which is normally known as the slope–albedo relation, or law. In
fact, according to many authors, equation (3) leads to less (or much
less) accurate results than equation (2). We will come back to this
point in Section 5, while in the rest of this section we will focus on
equation (2).

The measurement of the polarimetric slope h should be done,
in principle, by measuring the degree of linear polarization Pr in
a narrow interval of phase angles surrounding the inversion angle.
In practical terms, however, the observers rarely have at disposal
an ideal coverage of the phase–polarization curve, and often the
polarimetric slope is derived by making a linear fit of a few Pr

measurements, located not so close to the inversion angle as one
would generally hope. We will see in the next sections some new
possible approach to derive h when one has at disposal a good
coverage of the phase–polarization curve. For the moment, however,
in a first treatment of available polarimetric data for the objects of the
Shevchenko & Tedesco (2006) list, we adopt the usual techniques,
and we derive h from a linear least-squares fit of all available Pr data.
In particular, in order to use only homogeneous and high-quality
data:

(i) we limit our analysis to polarimetric measurements obtained
in the standard V filter;

(ii) we only use values of linear polarization Pr having nominal
errors less than 0.2 per cent;

(iii) we use only polarimetric measurements obtained at phase
angles larger than or equal to 14◦ of phase, a value generally well
beyond the phase corresponding to Pmin, and in a region of the

negative polarization branch where Pr starts to increase linearly
with phase;

(iv) we require to have at least five accepted measurements, and
that the interval of phase angles covered by the data is not less
than 3◦.

A smaller number of measurements, and a narrower interval of
covered phase angles, would make the adopted polarimetric slopes
more uncertain. The use of Pr data having fairly large error bars,
up to 0.2, is suggested by the general scarcity of polarimetric data,
but the effect of low-quality measurements is mitigated because
in the computation of the best-fitting curves, we weight the data
according to the inverse of the square of their associated errors.
As for the nominal errors of the Shevchenko & Tedesco (2006)
albedos, which are not explicitly listed by the authors, we derived
them using the quality codes listed in the above paper, according to
their meaning as indicated by the authors.

In this way, we were able to compute reliable polarimetric slopes
for 15 calibration objects. Taking the corresponding albedos from
the Shevchenko & Tedesco (2006) paper, we can plot h as a func-
tion of albedo, in a log–log scale, from which the coefficients C1

and C2 in equation (2) can be derived using simple least-squares
computations. The nominal errors of both the calibration albedos
and of the derived polarization slopes were taken into account in
the computation.

The results, including also the obtained values of the C1 and
C2 calibration parameters, are shown in Fig. 2. The values of
C1 and C2, together with their corresponding errors, are also
given in Table 1. A few considerations are suggested by looking
at Fig. 2. First, the linear best-fitting solution seems, as a first

Figure 2. The slope–albedo relation, in log–log scale, for 15 asteroids of
the list of Shevchenko & Tedesco (2006) for which a computation of the po-
larimetric slope is possible based on measurements obtained so far. Objects
for which we have at disposal at least 10 polarimetric measurements are
indicated by full, black symbols. Objects having a number of observations
between 5 and 10 are displayed using open, green symbols. The obtained
polarimetric slopes of all the objects in this plot have been used in the com-
putation of the linear best-fitting that is plotted together with the individual
data. The corresponding values of the C1 and C2 calibration coefficients are
also indicated.
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Table 1. Resulting values and nominal uncertainties of the calibration coefficients in different albedo–polarization relations
considered in this paper. The result of a possible parabolic fit of the polarimetric slope as a function of albedo is also listed (see
the text).

log (pV) = C1log (h) + C2 C1 = − 1.111 ± 0.031 C2 = − 1.781 ± 0.025
log (pV) = C1log (h) + C2 (pV ≥ 0.08) C1 = − 0.800 ± 0.041 C2 = − 1.467 ± 0.037
log (pV) = C1log (hABC) + C2 C1 = − 1.139 ± 0.026 C2 = − 1.850 ± 0.021
log (pV) = C1log (hABC) + C2 (pV ≥ 0.08) C1 = − 0.780 ± 0.037 C2 = − 1.469 ± 0.036
log (pV) = C3log (Pmin) + C4 C3 = − 1.419 ± 0.034 C4 = − 0.918 ± 0.006
log (pV) = C3log (Pmin) + C4 (pV ≥ 0.08) C3 = − 0.869 ± 0.042 C4 = − 0.789 ± 0.008
log (pV) = Cψ1log (�) + Cψ2 Cψ1 = − 0.987 ± 0.022 Cψ2 = − 0.458 ± 0.013
log (pV) = C∗

1 p∗ + C∗
2 C∗

1 = − 0.896 ± 0.029 C∗
2 = − 1.457 ± 0.018

log (h) = H1(log (pV))2 + H2log (pV) + H3 H1 = − 1.294 ± 0.001 H2 = − 3.140 ± 0.001 H3 = −2.428 ± 0.001

Figure 3. Comparison between the albedos of 15 objects observed in our
campaign, derived using our new calibration coefficients of the slope–
albedo relation, and the corresponding albedo values given by Shevchenko
& Tedesco (2006). The meaning of the symbols is the same as in Fig. 2

approximation, fairly reasonable. This seems to be confirmed by
Fig. 3, where the albedo values of the objects considered in our
analysis, as they can be derived from our updated determination
of the calibration coefficients, are plotted versus the correspond-
ing albedo values determined by Shevchenko & Tedesco (2006). In
Fig. 4, we show for each object the difference between the albedo
value obtained from the polarimetric slope and the albedo value
given by Shevchenko & Tedesco (2006). From Figs 2 to 4, it can
be seen that the discrepancies are generally low in absolute terms,
being mostly below ±0.04, as shown in Fig. 4. The error bars of the
obtained albedo values tend to increase with albedo, but this should
be expected, because the slope–albedo relation (equation 2) implies
that the error of pV must increase linearly with pV itself.7

One object turns out to have a polarimetrically derived albedo
that is significantly discrepant, namely (2) Pallas (the point which
is located at the highest vertical distance above the best-fitting line

7 If we call y = log (pV) and x = log (h), by solving by a linear least-squares
technique equation (equation 2) and determining the corresponding error dy
of y, it is easy to see that the corresponding error dpV turns out to be given
by dpV = ln (10.0) pV dy.

Figure 4. Plot of the difference between the albedo values derived using the
new calibration coefficients of the slope–albedo relation for objects included
in the Shevchenko & Tedesco (2006) list and the corresponding values found
by the above authors. The dashed lines correspond to differences of ±0.04
in albedo. The meaning of the symbols is the same as in Fig. 2.

in Fig. 2). The Shevchenko & Tedesco (2006) albedo value of
this asteroid, 0.145, seems to be noticeably high for an object be-
longing to the B taxonomic class, which is generally supposed to
include low-albedo asteroids. On the other hand, the Shevchenko
& Tedesco (2006) albedo of Pallas is also substantially confirmed
by more recent results based on WISE data (Masiero et al. 2011).
The albedo value derived from the polarimetric slope turns out to be
0.088 ± 0.007, which would appear to be more in agreement with
expectations for a body belonging to the low-albedo, B class. It is
interesting to note that De Leon et al. (2012) observed a large sample
of B-class objects and found a continuous variation of near-IR spec-
tral slopes, possibly suggesting a variety of different compositions.
This might be a consequence of the fact that the modern B class in-
cludes also some asteroids (the old F class of Tholen; see Tholen &
Barucci 1989) that in the 80s were kept separate based on their be-
haviour at the shortest wavelengths, which are no longer covered in
the most modern spectroscopic investigations. One should also take
into account that the surface properties of the largest asteroids like
(2) Pallas, which retain a larger fraction of the material excavated
in most impacts, can be different from those of smaller asteroids
which lose a much larger fraction of the impact debris from most
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collisions to space. We already know, based on their different IR
beaming parameters, that the surfaces of large and smaller asteroids
can be significantly different. In any case, polarimetry seems to in-
dicate for (2) Pallas a low albedo. In the absence of any new, updated
albedo and/or absolute magnitude value for this object coming from
other sources, we accept this discrepancy.

Another important problem which is most apparent in Fig. 3
concerns the asteroid (64) Angelina, namely the object having the
highest albedo value in our sample. The value given by Shevchenko
& Tedesco (2006) for this object is 0.474 ± 0.047. According to our
new calibration, the resulting albedo turns out to be 0.540 ± 0.085,
marginally in agreement with the Shevchenko & Tedesco (2006)
value. The problem here is not this discrepancy per se, but rather
the fact that, as shown in Fig. 2, in the high-albedo domain our new
calibration tends to assign albedo values increasingly close to 1.0
to asteroids having increasingly shallower polarimetric slopes.

In Fig. 5, we show a comparison between our new slope–albedo
relation (shown in red in the plot) and the most recent previous
calibration, namely that of Cellino et al. (2012, black line). Though
not being visually very different, an effect of the adopted log–log
scale, the new calibration tends, at high values of albedo, to stay
well above the values predicted by the previous calibration. We will
show in a separate paper that in the case of (44) Nysa, an asteroid
belonging to the high-albedo E class, our new calibration assigns
to this asteroid an albedo of about 0.9, which seems exceedingly
high to be credible for a rocky body. In the domain of low-albedo
asteroids, the larger steepness of the new best-fitting line produces
only a marginally better fit with respect to the previous calibration.

This problem of an exceedingly high slope of our linear cali-
bration seems to be connected with another major problem that is
apparent by looking at Fig. 2. This is the fact that at low albedo, the
data look rather noisy, with some data points, having polarimetric
slopes between 0.2 per cent deg−1 and 0.3 per cent deg−1, which are
located well above or below the linear best fit of the whole data set.
Trying to fit all the data, one is led to accept a linear best fit whose
steepness is a consequence of the presence of the lowest albedo

Figure 5. A comparison between the calibration of the slope–albedo re-
lation presented in this paper (red line) and those by Cellino et al. (2012,
black, dashed line).

asteroids. This is a problem that has been known since a long time,
and we will discuss it more extensively in the following subsection.

4.1 Effects of excluding low-albedo objects

In general terms, looking at Fig. 2, one could be tempted to conclude
that it is hard to fit the whole data set by using one unique linear
relation. In particular, it may appear that, if one could drop a handful
of objects having albedo lower than about 0.08, one could obtain
a much better fit for the remaining objects. This is an old-debated
subject, namely whether there is evidence of a saturation of the
slope–albedo law at small albedo values. This kind of possible
saturation is also much more evident in Pmin–albedo data, as we
will see in Section 5.

What happens if we exclude from our analysis low-albedo as-
teroids? Fig. 6 shows the results of this exercise. As expected, the
rms deviation of the linear best fit of the data, which is now much
shallower than in the case in which we kept all the available mea-
surements, is quite better, as shown in Table 2. One could conclude
that excluding the asteroids having albedo lower than 0.08 is the
best way to proceed to obtain an improved, and quite better, cali-
bration of the slope–albedo law. Fig. 7 shows that in this way, the
relative error on the derived albedo values turns out to be generally
better than 20 per cent, a quite good result. The problem, of course,
is that in the practical applications of asteroid polarimetry, one has
at disposal the polarimetric slope derived from observations, and
wants to derive from it the albedo, which is unknown. Unfortu-
nately, there is a range of values of polarization slope which is
shared by objects having albedo either around 0.05 or around 0.10.
By using a slope–albedo relation which is not valid for low-albedo
asteroids may produce a systematic overestimate of the albedo for
dark objects.

The best procedure to be adopted in practice may be the follow-
ing: when the polarimetric slope of an object is measured with good
accuracy, it will be better to use the calibration coefficients obtained

Figure 6. The same as Fig. 2, but here the objects having albedo smaller
than 0.08 (displayed here using open squares) were not used to derive
the displayed linear best fit. The corresponding values of the C1 and C2

calibration coefficients are also indicated.
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Table 2. Average rms deviation of polarimetrically derived albedo with respect to the values
in the Shevchenko & Tedesco (2006) list, using different possible albedo–polarization relations
described in the text. For each case, N is the number of observed asteroids used to obtain the
calibration.

Albedo computed from: rms deviation N

h slope from linear fit (all objects) 0.035 15
h slope from linear fit (only objects having pV > 0.08) 0.033 11
habc slope from linear-exponential fit (all objects) 0.038 16
habc slope from linear-exponential fit (only objects having pV > 0.08) 0.034 11
Pmin (all objects) 0.051 16
Pmin (only objects having pV > 0.08) 0.035 11
� = Pr(30) − Pr(10) (all objects) 0.026 16
p∗ (all objects) 0.043 13

Figure 7. The same as Fig. 4, but here the objects having albedo smaller
than 0.08 are not included in the analysis, and the plot shows the relative
error of the albedo determinations.

by dropping low-albedo objects, displayed in Table 1 and Fig. 6,
but only when the polarimetric slope turns out to be smaller than
about 0.25 per cent deg−1. In this way, the relative error in the de-
termination of the albedo should be within 20 per cent, a nice result,
as shown in Fig. 7.

If the slope is larger than the above value, and/or when the value
of polarization slope is more uncertain, the best choice would be
probably to use the calibration coefficients fitting the whole popu-
lation, displayed in Table 1 and Fig. 2. The errors that one should
expect for the higher values of polarimetric slopes should be in any
case limited, of the order of about ±0.03, not negligible in relative
terms, but in any case sufficient to correctly classify the objects as
low-albedo asteroids.

The polarimetric slope data shown in Fig. 2, can also suggest that
a linear fit is not fully adequate to represent the whole data set, and
a parabolic fit could be more suited to better represent the data. This
is shown in Fig. 8, in which a parabolic relation

log(h) = H1(log(pV ))2 + H2 log(pV ) + H3

is adopted, and the result of a best-fitting procedure is shown. The
linear plots already shown in Figs 2 and 6 are also shown for a

Figure 8. Results of a parabolic best fit of all available slope–albedo data.
The corresponding linear fits shown in Figs 2 and 6 are also displayed for a
comparison (red and blue dashed lines, respectively).

visual comparison. It is clear from the figure that a parabolic fit
applied to the whole data set gives good results. The slightly worse
fit of some objects having albedo around 0.2 (located below the
parabolic fit) seems to be compensated by a much better fit of
the polarimetric slope and albedo of the asteroid (2) Pallas, which
is the most discrepant object when trying linear fits to represent the
data. However, there is still the problem of the ambiguity affecting
the values of albedo to be assigned to objects having polarimetric
slopes between 0.2 per cent deg−1 and 0.3 per cent deg−1, which
cannot be solved.

For this reason, we list the obtained values of the A, B, C coeffi-
cients of our parabolic fit in Table 1, but we are not claiming that
there is such a big improvement with respect to the classical linear
fit, specially when dropping the lowest albedo objects, to force us
to necessarily use a parabolic fit in the future. Things could change
in the case that the discovery of other objects sharing the location
of (2) Pallas in the h–pV plane would confirm that a linear fit is
not really suited to adequately represent them, even by excluding
from the analysis low-albedo objects. Another possibility is that
future theoretical advances in the interpretation of light scattering
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phenomena could suggest that a parabolic fit is intrinsically more
correct to fit the relation between polarimetric slope and geometric
albedo, based on some physical arguments.

5 MORE O N C LASSICAL APPROACHES:
F I T T I N G P H A S E – P O L A R I Z AT I O N C U RV E S

One can wonder whether the slope–albedo relation is really the
best available choice to derive good estimates of asteroid albedos.
In fact, asteroid phase–polarization curves do not include only the
(mostly) linear variation of Pr around the inversion angle. A neg-
ative polarization branch also exists, not to mention the behaviour
exhibited at large phase angles (not achievable for main belt objects)
by near-Earth asteroids.

Historically, another relation between albedo and polarization
properties was found to involve the Pmin parameter, as shown in
equation (3). As mentioned in the previous section, this has been
generally abandoned in recent years, because Pmin data have been
found by some authors to be quite scattered around the best-fitting
representation given by equation (3). On the other hand, one could
also wonder whether this might be at least partly a consequence of
the difficulty of deriving accurate values of Pmin from the observa-
tions, making use of visual extrapolations of rather sparse polari-
metric data. This leads us to face the problem of finding suitable
analytical representations of the morphology of phase–polarization
curves. In this paper, we follow the example of previous authors,
and we use the following exponential-linear relation:

Pr = A(e−α/B − 1) + Cα, (4)

where α is the phase angle expressed in degrees, and A, B, C are
parameters to be determined by means of best-fitting techniques.
This analytical representation has been found in the past to be
suited to fit both phase–magnitude relations in asteroid photometry,
and phase–polarization curves in asteroid polarimetry (Kaasalainen
et al. 2003; Muinonen et al. 2009). Some examples of practical
applications of the above relation are the best-fitting curves of the
phase–polarization curves of the asteroids shown in Fig. 1. Accord-
ing to its mathematical representation, when the parameters A, B,
C are all positive, the exponential–linear relation describes a curve
characterized by a negative polarization branch between 0 and an
inversion angle αinv. The trend tends to become essentially linear
at large phase angles, where the exponential term tends quickly to
zero.

The computation of the best-fitting representation of any phase–
polarization curve using equation (4) can be done in many ways.
In this paper, we use a genetic algorithm, which, starting from
a random set of A, B, C values, explores the space of possible
solution parameters and finds the set of A, B, C values producing
the smallest possible residuals. Due to the intrinsic properties of a
genetic approach, the algorithm is launched several times, in order
to have a correspondingly high number of solutions, in order to
ensure that we are not missing the best possible one.

It should be noted, however, that the evaluation of the errors
of any polarimetric parameter derived by a best fit of the phase–
polarization curve using equation (4), is complicated by the fact that
the parameters A, B and C that minimize the χ2 are correlated. To
illustrate this situation, Fig. 9 shows that different pairs of A and B
values produce fits nearly indistinguishable in terms of rms residuals
(the differences being not larger than 0.0015). Fig. 10 shows a
similar situation for the parameters A and C. This means that the
non-diagonal elements of the error matrix (see e.g. Bevington 1969)
are not negligible with respect to the diagonal ones, and therefore

Figure 9. The values of the best-fitting parameters A and B found for the
best 200 solutions of the linear-exponential relation applied to polarimetric
data of asteroid (216) Kleopatra, using a ‘genetic’ algorithm. Note that all
the plotted solutions for A and B give nearly identical residuals and produce
best-fitting curves characterized by values of h, Pmin and other polarimetric
parameters which are essentially identical (within the nominal error bars).

Figure 10. The same as in Fig. 9, but for the A and C parameters in equation
(4).

the calculation of the error on any polarimetric parameter derived
from the exponential–linear curve should take into account all the
various co-variances. Our method for the χ2 minimization is based
on a genetic algorithm, which does not produce automatically the
error matrix. For the estimate of the error on polarimetric parameters
derived by best-fitting values of A, B, C, it is therefore more practical
to adopt an alternative method. Let us assume, as an example, that we
are interested in determining Pmin and its corresponding uncertainty.
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The resulting value of Pmin will be the one obtained using the A,
B, C values giving the smallest χ2. As for the error to be assigned
to this determination of Pmin, the method that we adopt consists
of calculating all Pmin values corresponding to identified sets of A,
B, C parameters that produce a fit of the phase–polarization curve
giving χ2 values such that χ2 ≤ χ2

min + 1. We then define as error
on Pmin the half difference between the extremes of the various Pmin

values so obtained. This approach was followed e.g. by Bagnulo
et al. (1995) and is consistent with the error analysis presented by
Bevington (1969). Needless to say, this procedure may be applied
to the determination of any polarimetric parameter (other than Pmin)
derived by an exponential–linear fit of the phase–polarization curve.

In what follows, since we want to limit our analysis only to
high-quality and well-covered phase–polarization curves, we im-
pose some strict constraints on the selection of the objects for
which we compute a best fit using the exponential–linear relation. In
particular:

(i) we exclude a priori from our analysis all measurements having
a nominal accuracy of Pr worse than 0.20;

(ii) we require to have at least four accepted measurements taken
at phase angles >2◦;

(iii) we require to have at least one accepted measurement taken
at phase angles ≥17◦;

(iv) we require to have at least one accepted measurement taken
at phase angles <14◦;

(v) we require to have at least three accepted measurements taken
at phase angles <30◦.

As in the case of the computation of the polarimetric slope de-
scribed in the previous section, we limit our analysis to avail-
able data obtained in V filter. Here, however, we add an additional
constraint: we do not use for calibration purposes the best-fitting
phase–polarization curves of asteroids for which we have fewer
than 10 accepted Pr measurements. All the criteria described above
are dictated by our will to restrict our calibration procedures to
the objects having excellently determined and optimally sampled
phase–polarization curves, only.

5.1 Use of Pmin

Having at disposal a best-fitting representation of a phase–
polarization curve according to equation (4), one can compute the
resulting Pmin value and the corresponding phase angle α(Pmin) at
which it is found. More in detail, α(Pmin) can be computed by
equalling to zero the first derivative of equation (4), from which we
obtain

α(Pmin) = ln

(
A

BC

)

then, Pmin can be computed as Pr(α(Pmin)) using equation (4). The
nominal uncertainty in Pmin has to be computed by doing a formal
propagation of the errors of the A, B, C parameters found in the
best-fitting solution of equation (4), using the procedure explained
above.

In the case of the Pmin–albedo relation described by equation (3),
the results of our exercise are shown in Fig. 11, including the best-
fitting values we find for the C3 and C4 coefficients. The calibration
is based on data of the Pmin values of 16 objects belonging to the
Shevchenko & Tedesco (2006) list, for which we have at least 10
polarimetric measurements. Four additional asteroids, for which we
have fewer than 10 measurements, are also shown using different
symbols, but they were not used in the computation of the best fit.

Figure 11. Best-fitting relation between Pmin and geometric albedo for
an available sample of 20 asteroid targets included in the Shevchenko &
Tedesco (2006) list. Only 16 objects for which we have at disposal at least
10 polarimetric measurements have been used to derive the best-fitting
solution. These objects are plotted as full, black symbols. Open, green
symbols represent objects for which we have fewer than 10 observations,
and were not used in the least-squares computation.

The obtained values of C3 and C4 calibration coefficients, together
with their corresponding errors, are also given in Table 1. We see
that, not unexpectedly, the distribution of the points in the Pmin–
albedo plane, in our log–log plot (in Fig. 11) makes it difficult to
find a satisfactory linear fit. Correspondingly, the agreement of the
resulting albedos with those of the Shevchenko & Tedesco (2006)
list is significantly worse than in the case of the calibration based
on the polarimetric slope. As shown in Table 3, we find a large
discrepancy in the case of the bright asteroid (64) Angelina, for
which a very high value of albedo of 0.600 ± 0.044 is obtained
from the Pmin–albedo relation, much larger than the 0.474 ± 0.047
value listed by Shevchenko & Tedesco (2006). The majority of the
other asteroids of our sample, conversely, tends to have an albedo
underestimated with respect to the calibration values, apart from a
few ones having the lowest albedo values. Among them, we note the
difference between the very low albedo value found by Shevchenko
& Tedesco (2006) for asteroid (444) Gyptis (0.037 ± 0.004) and
the value of 0.106 ± 0.002 that we obtain from its Pmin value.
This object, however, was not used in the derivation of the best-
fitting computation, because only six polarimetric measurements
are currently available for it, and moreover the phase–polarization
curve (not shown) is quite noisy. We note also that the albedo value
found by Shevchenko & Tedesco (2006) is very low, and might
possibly be slightly underestimated. By simply looking at Fig. 11,
a saturation of the Pmin–albedo relation at low albedo values is even
more evident than in the case of the slope–albedo relation analysed
in Section 4.1. It seems therefore that a removal of asteroids having
albedo less than about 0.08 from the best-fitting computation is even
more justified in this case. The result of this exercise is shown in
Fig. 12. The improvement of the residuals, listed in Table 2, is very
important, as also visually shown in the figure.
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Table 3. Resulting albedo values pV for all asteroids belonging to the Shevchenko & Tedesco (2006) list, for which
we have polarimetric observations suitable to derive an albedo value using one or more of the techniques explained
in the text. Only the albedo corresponding to the calibration computed using all available objects (not only those with
pV > 0.08) are listed. The last column gives, for a comparison, the albedo given by Shevchenko & Tedesco (2006).

Number pV(h) pV(hABC) pV(Pmin) pV(�) pV(p∗) pV(S&T)

1 0.076 ± 0.006 0.070 ± 0.004 0.058 ± 0.001 0.073 ± 0.003 0.069 ± 0.004 0.094 ± 0.006
2 0.088 ± 0.007 0.083 ± 0.005 0.074 ± 0.002 0.086 ± 0.004 0.084 ± 0.005 0.145 ± 0.009
3 0.207 ± 0.021 0.206 ± 0.016 0.188 ± 0.005 0.203 ± 0.007 0.207 ± 0.018 0.187 ± 0.006
4 0.322 ± 0.033 0.292 ± 0.025 0.276 ± 0.008 0.303 ± 0.009 0.318 ± 0.031 0.350 ± 0.020
8 0.199 ± 0.018 0.206 ± 0.016 0.213 ± 0.005 0.201 ± 0.007 0.212 ± 0.018 0.197 ± 0.012

27 – 0.360 ± 0.036 0.254 ± 0.008 0.328 ± 0.014 – 0.298 ± 0.045
39 0.297 ± 0.051 0.218 ± 0.017 0.196 ± 0.006 0.224 ± 0.007 0.264 ± 0.034 0.246 ± 0.015
41 – 0.066 ± 0.004 0.059 ± 0.001 0.088 ± 0.004 – 0.061 ± 0.004
47 – 0.071 ± 0.006 0.077 ± 0.003 0.071 ± 0.005 – 0.060 ± 0.002
51 0.071 ± 0.005 0.064 ± 0.004 0.047 ± 0.001 0.074 ± 0.003 0.061 ± 0.003 0.097 ± 0.006
64 0.540 ± 0.085 0.560 ± 0.059 0.600 ± 0.044 0.458 ± 0.022 0.597 ± 0.084 0.474 ± 0.047
78 – 0.072 ± 0.011 0.068 ± 0.003 0.092 ± 0.012 – 0.086 ± 0.003
85 0.072 ± 0.006 0.071 ± 0.004 0.077 ± 0.002 0.074 ± 0.004 0.075 ± 0.004 0.054 ± 0.003
105 0.066 ± 0.005 – – – – 0.047 ± 0.005
124 0.297 ± 0.034 – – – – 0.240 ± 0.036
129 0.226 ± 0.029 0.212 ± 0.017 0.152 ± 0.004 0.209 ± 0.007 0.202 ± 0.020 0.183 ± 0.018
216 – 0.090 ± 0.006 0.116 ± 0.002 0.085 ± 0.004 – 0.170 ± 0.010
230 0.204 ± 0.021 0.177 ± 0.013 0.132 ± 0.003 0.177 ± 0.006 0.179 ± 0.015 0.192 ± 0.019
324 0.066 ± 0.005 0.064 ± 0.004 0.059 ± 0.002 0.071 ± 0.003 0.064 ± 0.003 0.051 ± 0.003
431 – 0.069 ± 0.004 0.078 ± 0.002 0.073 ± 0.003 – 0.122 ± 0.018
444 – 0.093 ± 0.006 0.106 ± 0.002 0.102 ± 0.004 – 0.037 ± 0.004
704 0.061 ± 0.004 0.063 ± 0.004 0.082 ± 0.001 0.055 ± 0.003 0.069 ± 0.004 0.057 ± 0.002

Figure 12. The same as Fig. 11, but here the objects having albedo lower
than 0.08 (sowed using open symbols) were not used in the computation of
the linear best fit.

The big improvement of the obtained best fit makes this Pmin–
albedo relation much more suitable for the determination of the
albedo, but, again, this refers to only a more limited interval of
possible Pmin values, in particular those lower (in absolute value)
than about 1 per cent. For objects having deeper Pmin, the corre-
sponding interval of possible albedo values is exceedingly wide
to be used to derive a useful albedo determination. Based on our
results, we confirm therefore that, in general, the use of Pmin as

a reliable diagnostic of the albedo, but for asteroids exhibiting a
shallow polarization branch, should not be encouraged.

5.2 An alternative derivation of the polarimetric slope

Using the global fitting of the phase–polarization curves given by
equation (4), it is also possible to modify the way to derive the
polarimetric slope h. In so doing, one can make use of all the
available polarimetric measurements, and not only of those obtained
in a more or less narrow interval of phase angles centred around
the inversion angle. In particular, the polarimetric slope can be
determined as the first derivative of Pr with respect to the phase
angle (using equation 4), where the derivative has to be computed
at the inversion angle αinv. In turn, the value of αinv can also be
derived with excellent accuracy from equation (4). We adopt here
a very simple numerical approach. Having determined the values
of parameters A, B, C corresponding to the nominal best-fitting
solution, we make an iterative computation of Pr starting from an
initial phase angle value of 1◦, and using a fixed increment of
+0.◦02 in phase. When Pr(i + 1) × Pr(i) becomes negative, we
consider that αinv is equal to Pr(i) + 0.◦01, with an uncertainty
of 0.◦02. Having determined the inversion angle, we can compute
the resulting polarimetric slope as the first derivative of equation
(4), using the same procedure already adopted for Pmin to derive its
nominal uncertainty. In what follows, we will always call hABC these
new value of the slope computed as explained above. We obtained
hABC values for 20 objects of the Shevchenko & Tedesco (2006) list,
as shown in Fig. 13. Also in this case, however, we did not use in
the best-fitting computation the data of four objects having fewer
than 10 polarimetric measurements. These four asteroids, namely
(78) Diana, (216) Kleopatra, (431) Nephele and (444) Gyptis, are
indicated in Fig. 13 by means of open, green symbols. Note that our
sample includes now three extra objects, (27) Euterpe, (41) Daphne
and (47) Aglaja, which did not satisfy our previous acceptability
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Figure 13. The same as Fig. 2, but here the polarimetric slope hABC is com-
puted as the first derivative of Pr (according to equation 4) at the inversion
angle αinv for 20 asteroids of the Shevchenko & Tedesco (2006) list. Four
objects having fewer than 10 polarimetric measurements were not used for
the computation of the best fit. They are indicated by open, green symbols.

criterion for the computation of the polarimetric slope h carried out
in Section 4. Conversely, in Section 4 we made use of polarimetric
slopes for the two asteroids (105) Artemis and (124) Alkeste, which
do not satisfy our criteria for the computation of hABC.

The resulting values of the calibration coefficients C1 and C2 are
shown in Fig. 13, and they are also listed, together with their errors,
in Table 1. As in the cases seen above, we also computed the best-
fitting values of the calibration parameters which are obtained by
removing from the computation the asteroids having albedo lower
than 0.08. The results of this exercise, listed in Table 1, are also
shown in Fig. 14.

By looking at the results, we find that the linear best fit of the
slope–albedo relation look, again, reasonably good. However, there
is not any improvement with respect to the case when the polari-
metric slope was computed by doing a more trivial linear fit of the
available data around the inversion angle (see Fig. 3). As opposite,
the rms deviation with respect to the Shevchenko & Tedesco (2006)
albedos turn out to be slightly worse, as shown in Table 2.

The computation of the polarimetric slope from a simple linear
fit of data distributed around the inversion angle, or from the com-
putation of the first derivative of Pr computed at the inversion angle,
which would better correspond to the ideal definition of this param-
eter, is therefore not fully equivalent. It turns out that, opposite to
our own expectations, the simpler (purely linear) approach seems
to give slightly better results, in spite of all the uncertainties.

The results of the exercises described in this section are sum-
marized in Table 4, in which we list all the polarimetric param-
eters considered in our analysis (including some which will be
explained in the next section), and in Table 3, where we list the
Shevchenko & Tedesco (2006) values of albedo, together with
the corresponding values of albedo derived from the considered
polarimetric parameters and their nominal errors. Note that in
Table 4, we always give for the inversion angle αinv the value ob-
tained from the best fit of the whole phase–polarization curve using

Figure 14. The same as Fig. 13, but here objects having an albedo lower
than 0.08 (shown using open squares) are not used in the computation of the
best fit.

the exponential–linear relation. Only in cases in which this is not
available, but we have at disposal a polarimetric slope h obtained
as described in Section 4, we assign to αinv the value corresponding
to the intersection of the polarimetric slope with the Pr = 0 line.

The polarimetric parameters h, hABC and Pmin, and corresponding
albedos obtained from calibrations based on all and only the objects
having albedos larger than 0.08, as discussed in this and the previous
section, are also listed in Table 5. The improvement of the agreement
between the albedos obtained from polarimetric parameters and the
albedos given by Shevchenko & Tedesco (2006) is evident. Our
considerations about the best possible use of these calibrations have
been already exposed in previous sections.

6 OT H E R P O L A R I M E T R I C PA R A M E T E R S

The failure of our attempt to obtain more accurate albedo values
by using a polarimetric slope (hABC) obtained by a formal compu-
tation of the first derivative of equation (4) at the inversion angle,
can be important. A much simpler linear fit of polarimetric data
spread over a large interval of phase angles, seems to be capable of
giving slightly more accurate albedo solutions. This can be an indi-
cation that using polarimetric parameters describing the behaviour
of the phase–polarization curve only at some single value of phase
angle, or in a limited portion of the phase angle interval, for the
determination of the geometric albedo, could be not a very good
idea.

According to current evidence, we know that low albedo asteroids
exhibit a deeper value of Pmin as well as a steeper linear polariza-
tion slope over a large interval of phase angles. Asteroids having
increasingly higher albedos exhibit an opposite behaviour (increas-
ingly shallower Pmin and gentler h). There are also differences in the
typical values of the inversion angle for different classes of objects,
as found, as an example, in the case of the F taxonomic class by
Belskaya et al. (2005). One can imagine many different ways to
attempt a new calibration of the albedo–polarization relationship
trying to exploit the above evidence and make use of the overall
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Table 4. Summary of the polarimetric parameters found for all asteroids included in the Shevchenko & Tedesco (2006) list, for which we have
a suitable coverage of the phase–polarization curves. Each asteroid is identified by its number N. The second column gives the number Nobs of
polarimetric measurements used in the analysis. For the meaning of the other parameters, see the text.

N Nobs h αinv α(Pmin) Pmin � hABC p∗

1 33 0.2549 ± 0.0041 18.13 ± 0.02 7.20 ± 0.02 −1.683 ± 0.005 4.863 ± 0.020 0.2467 ± 0.0009 −0.331 ± 0.015
2 22 0.2223 ± 0.0015 18.57 ± 0.02 7.59 ± 0.07 −1.413 ± 0.017 4.123 ± 0.010 0.2111 ± 0.0004 −0.424 ± 0.014
3 26 0.1029 ± 0.0039 20.31 ± 0.02 8.04 ± 0.08 −0.732 ± 0.009 1.724 ± 0.023 0.0949 ± 0.0013 −0.863 ± 0.024
4 26 0.0691 ± 0.0012 22.37 ± 0.02 9.22 ± 0.08 −0.558 ± 0.005 1.150 ± 0.006 0.0701 ± 0.0005 −1.071 ± 0.025
8 28 0.1067 ± 0.0016 20.05 ± 0.02 8.30 ± 0.03 −0.671 ± 0.007 1.743 ± 0.006 0.0950 ± 0.0003 −0.873 ± 0.021
27 12 – 21.51 ± 0.02 7.27 ± 0.22 −0.593 ± 0.010 1.062 ± 0.033 0.0582 ± 0.0023 –
39 20 0.0745 ± 0.0093 21.43 ± 0.02 8.66 ± 0.07 −0.712 ± 0.013 1.563 ± 0.017 0.0906 ± 0.0009 −0.981 ± 0.049
41 11 – 22.53 ± 0.02 10.54 ± 0.04 −1.664 ± 0.015 4.040 ± 0.034 0.2591 ± 0.0019 –
47 11 – 17.95 ± 0.02 7.90 ± 0.20 −1.378 ± 0.031 5.037 ± 0.312 0.2412 ± 0.0109 –
51 20 0.2713 ± 0.0040 20.35 ± 0.02 8.29 ± 0.05 −1.950 ± 0.015 4.784 ± 0.023 0.2644 ± 0.0013 −0.271 ± 0.015
64 13 0.0434 ± 0.0043 18.77 ± 0.02 6.75 ± 0.26 −0.323 ± 0.014 0.757 ± 0.028 0.0395 ± 0.0014 −1.376 ± 0.048
78 5 – 22.19 ± 0.02 10.42 ± 0.29 −1.497 ± 0.048 3.835 ± 0.481 0.2394 ± 0.0307 –
85 11 0.2648 ± 0.0071 19.07 ± 0.02 8.68 ± 0.16 −1.375 ± 0.017 4.825 ± 0.108 0.2414 ± 0.0034 −0.372 ± 0.016
105 6 0.2872 ± 0.0032 19.75 ± 0.31 – – – – –
124 5 0.0745 ± 0.0041 19.79 ± 1.46 – – – – –
129 10 0.0953 ± 0.0077 21.07 ± 0.02 7.61 ± 0.03 −0.849 ± 0.011 1.676 ± 0.009 0.0928 ± 0.0004 −0.850 ± 0.035
216 9 – 18.83 ± 0.02 8.93 ± 0.09 −1.028 ± 0.011 4.151 ± 0.124 0.1971 ± 0.0041 –
230 15 0.1045 ± 0.0047 20.45 ± 0.02 7.55 ± 0.06 −0.937 ± 0.012 1.991 ± 0.017 0.1089 ± 0.0010 −0.792 ± 0.025
324 20 0.2890 ± 0.0046 19.73 ± 0.02 8.70 ± 0.05 −1.655 ± 0.016 4.987 ± 0.024 0.2644 ± 0.0010 −0.292 ± 0.014
431 7 – 19.67 ± 0.02 9.29 ± 0.07 −1.360 ± 0.024 4.864 ± 0.048 0.2478 ± 0.0023 –
444 6 – 20.65 ± 0.02 9.77 ± 0.04 −1.098 ± 0.012 3.477 ± 0.041 0.1914 ± 0.0021 –
704 32 0.3074 ± 0.0054 15.73 ± 0.02 7.02 ± 0.01 −1.310 ± 0.006 6.478 ± 0.011 0.2692 ± 0.0006 −0.333 ± 0.012

Table 5. List of polarimetric parameters h, hABC and Pmin obtained for 15 asteroids of the Shevchenko & Tedesco (2006) list, having albedo
larger than 0.08, and the corresponding albedos computed using the calibrations based on these objects, only (see Table 1). Ntot is the number of
polarimetric observations available for each object. The last column gives, for a comparison, the albedo value listed by Shevchenko & Tedesco
(2006).

N Ntot h hABC Pmin pV(h) pV(hABC) pV(Pmin) pV(ST)

1 33 0.2549 ± 0.0041 0.2467 ± 0.0009 −1.683 ± 0.005 0.102 ± 0.010 0.101 ± 0.010 0.103 ± 0.003 0.094 ± 0.006
2 22 0.2223 ± 0.0015 0.2111 ± 0.0004 −1.413 ± 0.017 0.114 ± 0.012 0.114 ± 0.012 0.120 ± 0.003 0.145 ± 0.009
3 26 0.1029 ± 0.0039 0.0949 ± 0.0013 −0.732 ± 0.009 0.210 ± 0.027 0.213 ± 0.026 0.213 ± 0.005 0.187 ± 0.006
4 26 0.0691 ± 0.0012 0.0701 ± 0.0005 −0.558 ± 0.005 0.289 ± 0.040 0.270 ± 0.035 0.270 ± 0.009 0.350 ± 0.020
8 28 0.1067 ± 0.0016 0.0950 ± 0.0003 −0.671 ± 0.007 0.204 ± 0.026 0.213 ± 0.026 0.230 ± 0.006 0.197 ± 0.012
27 12 – 0.0582 ± 0.0023 −0.593 ± 0.010 – 0.312 ± 0.043 0.256 ± 0.008 0.298 ± 0.045
39 20 0.0745 ± 0.0093 0.0906 ± 0.0009 −0.712 ± 0.013 0.272 ± 0.046 0.221 ± 0.027 0.218 ± 0.006 0.246 ± 0.015
51 20 0.2713 ± 0.0040 0.2644 ± 0.0013 −1.950 ± 0.015 0.097 ± 0.010 0.096 ± 0.009 0.091 ± 0.003 0.097 ± 0.006
64 13 0.0434 ± 0.0043 0.0395 ± 0.0014 −0.323 ± 0.014 0.420 ± 0.073 0.422 ± 0.063 0.434 ± 0.027 0.474 ± 0.047
78 5 – 0.2394 ± 0.0307 −1.497 ± 0.048 – 0.104 ± 0.015 0.114 ± 0.004 0.086 ± 0.003
124 5 0.0745 ± 0.0041 – – 0.272 ± 0.039 – – 0.240 ± 0.036
129 10 0.0953 ± 0.0077 0.0928 ± 0.0004 −0.849 ± 0.011 0.224 ± 0.032 0.217 ± 0.026 0.187 ± 0.004 0.183 ± 0.018
216 9 – 0.1971 ± 0.0041 −1.028 ± 0.011 – 0.121 ± 0.012 0.159 ± 0.003 0.170 ± 0.010
230 15 0.1045 ± 0.0047 0.1089 ± 0.0010 −0.937 ± 0.012 0.208 ± 0.027 0.191 ± 0.022 0.172 ± 0.004 0.192 ± 0.019
431 7 – 0.2478 ± 0.0023 −1.360 ± 0.024 – 0.101 ± 0.010 0.124 ± 0.003 0.122 ± 0.018

morphology of the phase–polarization curve. A first attempt in this
direction was proposed by Masiero et al. (2012).

These authors proposed to use a new observable, they called p∗

(p-star), defined as a parameter of maximum polarimetric variation,
given by

p∗ = W1 log(h) + W2 log(Pmin),

where h is, again, the classical polarimetric slope, and W1 and W2

are two parameters whose values were found by Masiero et al.
(2012) to be W1 = 0.79 ± 0.02 and W2 = 0.61 ± 0.03. The authors
used in their analysis a data set of 177 asteroids having an albedo
value estimated from thermal radiometry data produced by the WISE
mission, whereas polarimetric data were taken by the authors from
the literature. For 65 asteroids of this sample, the authors derived

a value of h, while for 112 objects they derived a value of Pmin.
In this way, Masiero et al. (2012) derived a new calibration of the
albedo–polarization relationship based on WISE albedos and the
newly introduced p∗ parameter. The relation they found was

log(pV ) = C∗
1 p∗ + C∗

2

and they found for the C∗
1 and C∗

2 coefficients the values
C∗

1 = −1.04 ± 0.04 and C∗
2 = −1.58 ± 0.09.

Since we use in our analysis a much smaller number of aster-
oids having presumably more accurate albedo values not derived
from thermal radiometry, and we use a different set of polarimetric
data including a large number of previously unpublished observa-
tions, we have decided to derive a new calibration of the albedo–p∗

relation, using the data at our disposal, while keeping the same
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Figure 15. The p∗–albedo relation for the 13 asteroids of the list of
Shevchenko & Tedesco (2006) for which a reliable estimate of p∗ is possi-
ble based on obtained values of the h polarimetric slope and of Pmin. The
best-fitting solution is plotted together with the individual data. The newly
derived values of the A and B parameters and their resulting errors are also
indicated.

definition of the p∗ parameter as given by Masiero et al. (2012). In
particular, we kept the values computed by Masiero et al. (2012) for
the W1 and W2 parameters, which were derived by the authors based
on their own analysis of polarimetric data. We computed then the
p∗ parameter for our sample of asteroids using Pmin values already
obtained from our best fit of equation (4) and polarimetric slopes
h derived as described in Section 4. We had at disposal estimates
for both h and Pmin for 13 objects, only. The results of this exercise
are shown in Fig. 15, in which we also show the new values that we
found for the C∗

1 and C∗
2 parameters. In particular, we have

C∗
1 = −0.896 ± 0.029

and

C∗
2 = −1.457 ± 0.018.

The resulting fit is fairly good, and we confirm that p∗ is another
useful parameter for albedo determination. The resulting rms devi-
ations, however, are higher than those corresponding to the slope–
albedo relation discussed above, both using either h or habc, as shown
in Table 2. We find a quite big discrepancy concerning the predicted
albedo for (64) Angelina and the corresponding Shevchenko &
Tedesco (2006) value. In the region of higher p∗ values (right re-
gion of the plot), moreover, the scatter of the albedos around the
best-fitting line is fairly high.

There are, of course, other possibilities to use polarimetric pa-
rameters describing the overall morphology of the observed phase–
polarization curves. A very simple idea is to use some parameter
built directly from the obtained values of polarization Pr taken at
very different values of phase angle, possibly including both the
negative and the positive polarization branches. In this paper, we
introduce such a parameter, that we call �, and we define it as

� = Pr(30◦) − Pr(10◦),

Figure 16. The �–albedo relation in log–log scale for 20 asteroids of the list
of Shevchenko & Tedesco (2006) for which we were able to compute the �

parameter. Four asteroids having fewer than 10 polarimetric measurements
were not used in the computation of the linear best fit and are indicated by
open, green symbols. The best-fitting solution corresponding to the relation
log (pV) = C1 log (�) + C2 is plotted together with the individual data. The
best-fitting values of the parameters and their nominal uncertainties are also
indicated in Table 1.

where the dependence of Pr upon the phase angle is assumed to be
given by equation (4). We derived therefore the � parameter for
our sample of asteroids in the Shevchenko & Tedesco (2006) list
following the same criteria already described above in the case of
our computations of Pmin and hABC. This corresponds to 20 aster-
oids, listed in Table 4. For the purposes of calibration, again, we
did not use data of four asteroids having fewer than 10 polarimet-
ric measurements, which in Fig. 16 are displayed using different
symbols. The figure shows a log–log plot of � as a function of the
Shevchenko & Tedesco (2006) albedo, according to the relation

log(pV ) = Cψ1 log(�) + Cψ2

identical to the classical slope–albedo relation, but using the new
parameter � instead of the polarimetric slope h. Fig. 16 shows the
best-fitting linear solution, and the resulting values of the Cψ1 and
Cψ2 parameters, which are also listed, together with their corre-
sponding uncertainties, in Table 1.

The fit looks good, and this is confirmed by the resulting rms
deviations, which are found to be slightly lower than in the case of
all other albedo–polarization relations examined in this paper, in-
cluding those obtained by excluding low-albedo objects, as shown
in Table 2. In Fig. 17, we plot the differences between the albedo
values produced by our �–albedo calibration and the albedos given
by Shevchenko & Tedesco (2006). The albedo values obtained from
the � parameter tend to be always very close to the corresponding
Shevchenko & Tedesco (2006) values, although the relative uncer-
tainty tends to be fairly high for the darkest asteroids.

With respect to the results obtained by using the polarimetric
slope as shown in previous sections, it is encouraging to note
that our �–albedo relation seems to fit nicely the Shevchenko &
Tedesco (2006) albedos in the whole interval covered by the data.
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Figure 17. Differences between the albedos of 20 objects, derived using our
calibration of the �–albedo relation, and the corresponding albedo values
given by Shevchenko & Tedesco (2006). Four asteroids having fewer than
10 polarimetric measurements were not used in the computation of the linear
best fit and are indicated by open, green symbols.

The albedo obtained for (64) Angelina seems to suggest that we
have no longer the problem of a possible overestimation of the
albedo of bright objects, which affected the calibration of the clas-
sical slope–albedo law, as seen in Section 4. We also note that the
value of Cψ1 = −0.987 ± 0.022, obtained in our calibration of
the �–albedo relation, is also formally in agreement, within the
uncertainty, with an even simpler hyperbolic relation pV = K/�,
with K = 10C2 	 0.348.

We find, again, some problems with asteroid (2) Pallas, for which
an albedo of 0.086 ± 0.004 is found by our � calibration, still much
lower than the 0.145 albedo indicated by Shevchenko & Tedesco
(2006). The same is true for (216) Kleopatra, which has a � value
nearly identical to that of Pallas, corresponding to an albedo of
0.085 ± 0.004, much lower than the Shevchenko & Tedesco (2006)
value of 0.170 ± 0.010. As opposite, for (444) Gyptis we have
problems of a remarkable overestimation of the albedo, but in this
case the Shevchenko & Tedesco (2006) albedo is extremely low,
0.037 ± 0.004. Both Kleopatra and Gyptis are asteroids for which
we have fewer than 10 polarimetric measurements. In the case of
(444) Gyptis, the phase–polarization curve is quite noisy, whereas
this is not the case for Kleopatra.

7 C O N C L U S I O N S A N D F U T U R E WO R K

The solution of the problem of determining the best possible cali-
bration of the relation between geometric albedo and polarization
properties for the asteroids is still an important task even in the
era of large thermal radiometry surveys, whose results are valid in
terms of statistical distribution among large samples of the pop-
ulation, but can be strongly inaccurate for what concerns single
objects.

It is therefore very important to optimize the performances of the
polarimetric technique, as an effective tool to estimate the albedo
of the objects, with particularly important applications to the physi-

cal characterization of newly discovered, and potentially hazardous
near-Earth objects. We stress again that, once a reliable calibra-
tion of the relation between albedo and polarimetric parameters is
available, the albedo values obtained by polarimetric data are not af-
fected at all by uncertainties due to poor knowledge of the absolute
magnitude of the objects, a relevant advantage over other possible
techniques.

In this paper, we have carried out an extensive analysis, based
on the idea of using for calibration purposes a still limited number
of asteroids for which we can be reasonably confident to know the
albedo with good accuracy. We have used this sample to obtain a new
calibration of the classical slope–albedo law, with the polarimetric
slope being derived from available data using different possible ap-
proaches. We have also analysed other possible relations, including
a new calibration of the classical Pmin–albedo relation, the more
recently proposed p∗–albedo relation (Masiero et al. 2012), and a
new relation based on the � polarimetric parameter, introduced for
the first time in this paper. The resulting values of the various po-
larimetric parameters for 22 asteroids considered in our analysis,
and the corresponding values of albedo are given in Tables 3 and 4,
respectively.

The extensive analysis presented in this paper produced a variety
of interesting results. For what concerns the ‘classical’ slope–albedo
and Pmin–albedo relations, we confirm that it is difficult to find a
calibration which can fit accurately objects of all albedo classes. The
results improve very much when the asteroids having low albedo,
below 0.08, are not considered in the analysis. The presence of
asteroids having significantly different albedo but nearly identical
polarimetric slopes can even suggest that a parabolic fit is more
suited to represent the h–albedo relation, as shown in Section 4.1
(see Fig. 8).

The calibration of the h albedo and Pmin–albedo relations that we
obtained by excluding low-albedo asteroids from our analysis gives
good results, with uncertainties within ±20 per cent for medium-
and high-albedo objects. For asteroids exhibiting a steep polarimet-
ric slope, or having a polarimetric slope computed on the basis of
only a few observations, the classical h–albedo relation can still be
used, using the calibration coefficients found by considering all the
available calibration objects, since the expected errors should be
still acceptable. This is encouraging, because whenever there are at
least a few measurements obtained at phase angles larger than 14◦,
it is generally possible to derive a value of the polarimetric slope h,
and the resulting albedo values turn out to be reasonably accurate in
absolute terms, although the relative error can be above 30 per cent
for low-albedo objects. As opposite, the use of Pmin should always
be discouraged for asteroids having a deep negative polarization
branch, as seen in Section 5.1.

If one wants to avoid the complication of using different cal-
ibrations of the slope–albedo relation for asteroids belonging to
different albedo classes, other polarimetric parameters can also be
adopted. In particular, both � and p∗ require to have at disposal
phase–polarization curves of a sufficiently good quality to be fit by
means of an exponential–linear representation (equation 4). This
cannot be done when the number of polarimetric measurements is
too small, or the observations are concentrated over a too limited
interval of phase angles. While the uncertainty of albedo determi-
nations based on the p∗ parameter seems to be reasonable but not
really negligible, the most accurate albedo determinations can be
obtained when the � parameter can be reliably determined from
the available data. The advantage of using � is that this parameter
seems to be suited to give accurate values of albedo for both bright
and dark asteroids.
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Of course, there are some caveats to be taken into account. For
instance, there are asteroids, like the so-called Barbarians, which
exhibit peculiar phase–polarization curves (see Cellino et al. 2006).
The determination of the geometric albedo for Barbarian asteroids
is a problem, because any derivation of the albedo using relations
valid for the rest of the population may be misleading. However,
it is also true that more data are needed to better understand the
situation.

In fact, the major problem of asteroid polarimetry today is cer-
tainly a serious lack of data. Further progress in this field will require
the use of dedicated telescopes, to fill the gap with the amount of
information already available from other observing techniques.

Polarimetry has been so far severely underappreciated as an es-
sential tool for physical characterization of asteroids and also other
classes of small bodies in the Solar system. This paper summa-
rizes the current state of the art for what concerns the calibration of
the relation between polarimetric properties and albedo, and makes
some further steps forward, with the introduction of the � parame-
ter, which seems to be a new useful tool to obtain reliable values of
asteroid albedos.

In a separate paper, to be submitted soon for publication, we
exploit the results of the present analysis to derive the albedos of a
fairly large number of objects for which we lack a Shevchenko &
Tedesco (2006) determination, and we analyse the distributions of
other parameters that characterize the phase–polarization curves of
main belt asteroids.
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