136 research outputs found

    Expansion of CD8+CD57+ T Cells in an Immunocompetent Patient with Acute Toxoplasmosis

    Get PDF
    CD57+ T cells increase in several viral infections like cytomegalovirus, herpesvirus, parvovirus, HIV and hepatitis C virus and are associated with several clinical conditions related to immune dysfunction and ageing. We report for the first time an expansion of CD8+ CD57+ T cells in a young patient with an acute infection with Toxoplasma gondii. Our report supports the concept that CD8+ CD57+ T cells could be important in the control of chronic phase of intracellular microorganisms and that the high numbers of these cells may reflect the continuing survey of the immune system, searching for parasite proliferation in the tissues

    A statistical data-based approach to instability detection and wear prediction in radial turning processes

    Get PDF
    Radial turning forces for tool-life improvements are studied, with the emphasis on predictive rather than preventive maintenance. A tool for wear prediction in various experimental settings of instability is proposed through the application of two statistical approaches to process data on tool-wear during turning processes: three sigma edit rule analysis and Principal Component Analysis (PCA). A Linear Mixed Model (LMM) is applied for wear prediction. These statistical approaches to instability detection generate results of acceptable accuracy for delivering expert opinion. They may be used for on-line monitoring to improve the processing of different materials. The LMM predicted significant differences for tool wear when turning different alloys and with different lubrication systems. It also predicted the degree to which the turning process could be extended while conserving stability. Finally, it should be mentioned that tool force in contact with the material was not considered to be an important input variable for the model.The work was performed as a part of the HIMMOVAL (Grant Agreement Number: 620134) project within the CLEAN-SKY program, linked to the SAGE2 project for geared open-rotor development and the delivery of the demonstrator part. Funding through grant IT900-16 is also acknowledged from the Basque Government Department of Education, Universities and Research

    Live Attenuated Varicella-Zoster Vaccine in Hematopoietic Stem Cell Transplantation Recipients

    Get PDF
    AbstractHematopoietic stem cell transplantation (HSCT) recipients are at risk for varicella-zoster virus (VZV) reactivation. Vaccination may help restore VZV immunity; however, the available live attenuated VZV vaccine (Zostavax) is contraindicated in immunocompromised hosts. We report our experience with using a single dose of VZV vaccine in 110 adult autologous and allogeneic HSCT recipients who were about 2 years after transplantation, free of graft-versus-host disease, and not receiving immunosuppression. One hundred eight vaccine recipients (98.2%) had no clinically apparent adverse events with a median follow-up period of 9.5 months (interquartile range, 6 to 16; range, 2 to 28). Two vaccine recipients (1.8%) developed a skin rash (one zoster-like rash with associated pain, one varicella-like) within 42 days post-vaccination that resolved with antiviral therapy. We could not confirm if these rashes were due to vaccine (Oka) or wild-type VZV. No other possible cases of VZV reactivation have occurred with about 1178 months of follow-up. Live attenuated zoster vaccine appears generally safe in this population when vaccinated as noted; the overall vaccination risk needs to be weighed against the risk of wild-type VZV disease in this high-risk population

    Security of data science and data science for security

    Get PDF
    In this chapter, we present a brief overview of important topics regarding the connection of data science and security. In the first part, we focus on the security of data science and discuss a selection of security aspects that data scientists should consider to make their services and products more secure. In the second part about security for data science, we switch sides and present some applications where data science plays a critical role in pushing the state-of-the-art in securing information systems. This includes a detailed look at the potential and challenges of applying machine learning to the problem of detecting obfuscated JavaScripts

    An insight into imbalanced Big Data classification: outcomes and challenges

    Get PDF
    Big Data applications are emerging during the last years, and researchers from many disciplines are aware of the high advantages related to the knowledge extraction from this type of problem. However, traditional learning approaches cannot be directly applied due to scalability issues. To overcome this issue, the MapReduce framework has arisen as a “de facto” solution. Basically, it carries out a “divide-and-conquer” distributed procedure in a fault-tolerant way to adapt for commodity hardware. Being still a recent discipline, few research has been conducted on imbalanced classification for Big Data. The reasons behind this are mainly the difficulties in adapting standard techniques to the MapReduce programming style. Additionally, inner problems of imbalanced data, namely lack of data and small disjuncts, are accentuated during the data partitioning to fit the MapReduce programming style. This paper is designed under three main pillars. First, to present the first outcomes for imbalanced classification in Big Data problems, introducing the current research state of this area. Second, to analyze the behavior of standard pre-processing techniques in this particular framework. Finally, taking into account the experimental results obtained throughout this work, we will carry out a discussion on the challenges and future directions for the topic.This work has been partially supported by the Spanish Ministry of Science and Technology under Projects TIN2014-57251-P and TIN2015-68454-R, the Andalusian Research Plan P11-TIC-7765, the Foundation BBVA Project 75/2016 BigDaPTOOLS, and the National Science Foundation (NSF) Grant IIS-1447795

    Heap-based Algorithms to Accelerate Fingerprint Matching on Parallel Platforms

    Get PDF
    Nowadays, fingerprint is the most used biometric trait for individuals identification. In this area, the state-of-the-art algorithms are very accurate, but when the database contains millions of identities, an acceleration of the algorithm is required. From these algorithms, Minutia Cylinder-Code (MCC) stands out for its good results in terms of accuracy, however its efficiency in computational time is not high. In this work, we propose to use two different parallel platforms to accelerate fingerprint matching process by using MCC: (1) a multi-core server, and (2) a Xeon Phi coprocessor. Our proposal is based on heaps as auxiliary structure to process the global similarity of MCC. As heap-based algorithms are exhaustive (all the elements are accessed), we also explored the use an indexing algorithm to avoid comparing the query against all the fingerprints of the database. Experimental results show an improvement up to 97.15x of speed-up, which is competitive compared to other state-of-the-art algorithms in GPU and FPGA. To the best of our knowledge, this is the first work for fingerprint identification using a Xeon Phi coprocessor.Instituto de Investigación en Informátic

    Railway bridge structural health monitoring and fault detection: state-of-the-art methods and future challenges

    Get PDF
    Railway importance in the transportation industry is increasing continuously, due to the growing demand of both passenger travel and transportation of goods. However, more than 35% of the 300,000 railway bridges across Europe are over 100-years old, and their reliability directly impacts the reliability of the railway network. This increased demand may lead to higher risk associated with their unexpected failures, resulting safety hazards to passengers and increased whole life cycle cost of the asset. Consequently, one of the most important aspects of evaluation of the reliability of the overall railway transport system is bridge structural health monitoring, which can monitor the health state of the bridge by allowing an early detection of failures. Therefore, a fast, safe and cost-effective recovery of the optimal health state of the bridge, where the levels of element degradation or failure are maintained efficiently, can be achieved. In this article, after an introduction to the desired features of structural health monitoring, a review of the most commonly adopted bridge fault detection methods is presented. Mainly, the analysis focuses on model-based finite element updating strategies, non-model-based (data-driven) fault detection methods, such as artificial neural network, and Bayesian belief network–based structural health monitoring methods. A comparative study, which aims to discuss and compare the performance of the reviewed types of structural health monitoring methods, is then presented by analysing a short-span steel structure of a railway bridge. Opportunities and future challenges of the fault detection methods of railway bridges are highlighted
    corecore