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Abstract 

There is currently a lack of an efficient, objective and systemic approach towards the 

classification of Alzheimer’s disease (AD), due to its complex etiology and pathogenesis. As 

AD is inherently dynamic, it is also not clear how the relationships among AD indicators vary 

over time. To address these issues, we propose a hybrid computational approach for AD 

classification and evaluate it on the heterogeneous longitudinal AIBL dataset. Specifically, 

using clinical dementia rating as an index of AD severity, the most important indicators (mini-

mental state examination, logical memory recall, grey matter and cerebrospinal volumes from 

MRI and active voxels from PiB-PET brain scans, ApoE, and age) can be automatically 

identified from parallel data mining algorithms. In this work Bayesian network modelling 

across different time points is used to identify and visualize time-varying relationships among 

the significant features, importantly in an efficient way using only coarse-grained data. 

Crucially, our approach suggests key data features and their appropriate combinations that 

are relevant for AD severity classification with high accuracy. Overall, our study provides 

insights into AD developments and demonstrates potential of our approach in supporting 

efficient AD diagnosis.  
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Introduction  

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder with currently 

incompletely characterised etiology and no effective treatment. AD and its prodromal stage, 

mild cognitive impairment (MCI), are associated with multiple pathogenesis, markers and 

risks. For example, age is a well-known risk indicator of developing AD	1.	Medical history of 

neurological disorder has also been linked to higher AD risk 2. In terms of biomarkers, 

apolipoprotein E (ApoE) Ɛ4 allele is associated with higher AD risk than the more common 

ApoE Ɛ3 allele 3,4. ApoE Ɛ4 allele has also been linked to two key pathologies: beta amyloid, a 

major component of senile plaque of AD, and the hyperphosphorylation of microtubule-

associated tau protein that leads to neurofibrillary tangles 5,6,7. Brain imaging data such as 

magnetic resonance imaging (MRI) and positron-electron tomography (PET) with [11C]-

Pittsburgh compound B (PiB) or [18F]-fluorodeoxyglucose (FDG) tracers have been shown to 

be reliable methods of diagnosis and prediction of AD progression with accuracy (area under 

receiver operating characteristic curve, AUC 8) being 0.82 and 0.87 in 9,10 respectively. 

Some other studies focusing on brain imaging data were conducted for AD identification, 

such as 11, 12. Within clinical setting, psychological/functional assessments are typically 

conducted, which may include mini-mental state examination (MMSE), logical memory 

immediate/delayed recall assessments (LMIR/LMDR), and clinical dementia rating (CDR) 13.  

Thus, it is clear that the disease can be linked to factors across multiple domains 14. 

Further, our recent work on multimodal kernel approach applied to combined MRI-PET 

neuroimaging data has shown more accurate AD diagnosis and prognosis than each 

individual modality 15. Thus, multimodal data fusion may provide more accurate and holistic 

picture of AD data, better decision support for AD diagnosis and prognosis 16. In addition to 

the aforementioned brain imaging multimodalities, one may also augment with 

psychological/functional assessments, blood tests, ApoE genotype, and medical history. 

However, coming out with systematic and automated analytical approach for such 

heterogeneous AD data is still a largely open problem. Despite extensive studies on AD, 
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most of the studies considered only a limited number of factors, and hence may be 

insufficient to provide a systemic understanding or characterization of this complex disease. 

For example, a novel multiple kernel learning framework combing multimodal features for AD 

classification was proposed in 17, however only imaging data, i.e. cerebrospinal fluid 

biomarkers (CSF) and MRI, were taken into account regarding very limited data size which 

only includes 70 healthy controls and 50 progressive MCI patients. A hybrid model, 

combining features reduction technique by using rough sets and genetic algorithm and 

uncertain reasoning technique based on Bayesian network (BN), was proposed in 18, but 

only psychological/functional assessments were conducted and the obtained BN did not 

show the strength of the corresponding relationships among the assessments, neither the 

evolution of the BNs across time. 

Therefore, it is still not completely known what factors are relatively more important than 

others with respect to AD, and how they can be influenced under certain conditions or stages 

of the disease. With data related to AD becoming more readily available, mathematical and 

computational approaches become necessary to integrate, analyse and visualise large, 

complex and heterogeneous data to provide holistic insights into the disease mechanisms, 

improve diagnosis and risk predictions, and suggest stratified treatments or interventions 19,20. 

However, a systemic computational approach that can rapidly integrate coarse-grained, 

heterogeneous data for AD classification is currently lacking.  

In this work, we apply a combination of complementary data mining and BN modelling 

approaches on a heterogeneous longitudinal dataset to efficiently identify key features from 

coarse-grained data and understand probabilistic dependencies among multiple AD factors 

and their changes over time. In particular, we used the Australian Imaging Biomarkers and 

Lifestyle flagship study of ageing (AIBL) dataset 21, one of the largest, well-characterised, 

longitudinal (4.5 years) studies on healthy ageing and AD. It was collected from baseline and 

then followed up every 18 months. The data used will be coarse-grained: (i) ApoE allele type 

instead of genome sequence data; (ii) total number of active pixels (PET) or total volume 
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(MRI) from brain imaging data instead of brain region specific; (iii) overall scores from 

psychological/functional tests instead of specific questions from a test; and (iv) overall 

neurological history instead of specific neurological disorders. Compared with the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) data22, the AIBL data provides more PiB-

PET data samples and more allele information of the ApoE genotype. The AIBL data is also 

more heterogeneous, including both imaging and non-imaging data types, than the Open 

Access Series of Imaging Studies (OASIS) which has only imaging data23. Our proposed 

computational framework is summarized in Fig. 1.  

 

Fig. 1. Proposed hybrid computational framework. CAIM: class-attribute interdependence 

maximization. 10-fold CV: 10-fold cross validation. SMOTE: synthetic minority over-sampling 

technique. Correlation analysis validates usage of clinical dementia rating (CDR) as an index of AD 

severity. The CAIM algorithm is used to discretize the considered features with respect to CDR. 

Entropy-based feature selection with 10-fold CV is applied to a model development set to identify 

features most relevant for predicting AD severity. SMOTE technique is implemented to balance 

unbalanced disease classes in the model development set in order to avoid inflated performance 

estimates. 10-fold CV is used to evaluate the capability of various scoring functions of BNs and 

determine the BN with the optimal predictive performance. The trained BN models are evaluated on 

an independent test set partitioned from the original data. Prior knowledge from domain experts is 

used to provide constraints in structure learning (see Methods section for more details).  
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Results 

Significant correlation between clinical diagnosis and clinical dementia rating 

Clinical dementia rating (CDR) is designed to stage the severity of AD based on the state of 

the participants in terms of memory, orientation, judgment and problem solving, community 

affairs, home and hobbies, and personal care 24. It has been considered as a more objective 

assessment for AD severity due to its gold standard to classify each individual into one of the 

following 5 categories by corresponding CDR scores: normal control (CDR=0), very mild 

(CDR=0.5), mild (CDR=1), moderate (CDR=2), and severe (CDR=3) dementia 24. This is in 

contrast to relatively subjective clinical diagnosis, e.g. 25. Most recently, it has been reported 

that the CDR has been used to identify AD severity 26, 27. Studies in 28 showed that CDR 

suits well to serve as a comprehensive primary outcome measure for a study that will enrol 

subjects with early AD and follow them to more advanced stages. To avoid subjective clinical 

diagnosis, we will use CDR as a measure of severity in this study. To provide evidence to 

support this, we calculate the Pearson’s product-moment correlation between clinical 

diagnosis and CDR. Within the AIBL data, we selected 1473 complete pairs of clinical 

diagnosis and corresponding CDR score without missing value data, and found that CDR is 

highly correlated to diagnosis. Fig. 2 illustrates the data distribution across diagnostic 

categories with respect to different CDR scores. The correlation coefficient (Cor.) with 

respect to diagnosis is 0.81 with 95% confidence interval (CI) of (0.79-0.83) and p < 2.2e-16. 

This justifies our use of CDR as a more objective measurement of AD severity. 
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Fig. 2.	 Strong correlation between clinical diagnosis and Clinical Dementia Rating (CDR) 

categories. Vertical bars: healthy control (HC); horizontal bars: MCI; diagonal brick bars: AD; Cor.: 

correlation coefficient; CI: confidence interval. CDR scores reflect 5 categories: normal controls 

(CDR=0), very mild (CDR=0.5), mild (CDR=1), moderate (CDR=2), and severe (CDR=3) patients. 

Clinical diagnosis contains 3 categories: HC, MCI, and AD. The data distribution along with the Cor., 

95% CI, and p-value have shown significant correlation between clinical diagnosis and CDR. 

Data setup and discretisation 

We considered a total of 33 heterogeneous features: 2 demographics items, 10 medical 

history data, 13 blood test results including ApoE genotype, 4 psychological and functional 

assessments (including CDR), 4 MRI and PiB-PET imaging data (see Supplementary Table 

S1 for the full list of the data features and descriptions). Given the CDR categories, the 

distribution of dementia cases in different stages of disease severity at baseline (BL) and 18 

(M18), 36 (M36), and 54 (M54) months from baseline is shown in Supplementary Table S2. 

The data was arranged into the following 3 groups: (1) 197 participants with complete data at 

BL and 130 participants with complete data occurring at least once within M18-M54; (2) 133 

participants with complete time-evolved data at both BL and at least once within M18-M54; 

and (3) 57 participants with complete time-evolved data across all times. Compared with the 
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first 2 groups, group 3 has much smaller data samples, especially the corresponding CDR of 

this group has only 2 categories (i.e., normal and very mild). As this effect will be significant 

in the study of time evolution of relationships in the data, we shall focus on the first 2 data 

groups (See Group1 and Group 2 in Supplementary Table S2). 

We discretised all features in order to make the subsequent BN robust and prevent over-

fitting during structural learning 29. The data features were discretized with respect to CDR 

categories using class-attribute interdependence maximization (CAIM) algorithm 30 (see 

Methods). The feature values were grouped into specific sets of intervals depending on how 

many categories each feature has. In both Groups 1 and 2, there was no subject with severe 

CDR category. As the number of individuals with moderate CDR category was relatively 

small, the subjects from mild and moderate CDR categories were combined into one 

mild/moderate CDR category. CDR and MMSE were discretised into 3 and 4 intervals, 

respectively, according to their definitions (Supplementary Table S1). ApoE genotypes were 

discretised into 5 categories as there are a total of 5 different combinations of alleles: ε3ε2, 

ε3ε3, ε4ε2, ε4ε3, and ε4ε4. Features without explicit categories were discretised into the 

same number of intervals as that of CDR i.e. 3 intervals. 

Feature selection and data balancing 

For easier interpretation, shorter training time, and to prevent overfitting and reduce noisy 

data, feature selection is needed before data modelling. We concurrently applied entropy-

based information gain, information gain ratio, and symmetrical uncertainty algorithms, in 

order to obtain a consistently significant subset of features. Note that the feature selection 

procedure was applied to the model development set only 31. After 10-fold cross validation 

(10-FCV), the most relevant features were identified including three psychological/functional 

assessments (MMSE, LMIR, and LMDR), neuroimaging features extracted from MRI (grey 

matter volume (GM) and cerebrospinal fluid volume (CSF)) and active voxels from PiB-PET, 

ApoE genotype, and age. In total, 8 out of 32 most important and stable features with respect 
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to CDR were selected for model training. All selected features had selection frequency of 

100%. To further validate our feature selection results, we carried out the correlation analysis 

between CDR and the selected features. Pearson’s and Spearman’s correlation filtering 

showed that three considered psychological/functional assessments were the most 

significant features with respect to CDR, followed by three neuroimaging features, ApoE and 

age. This observation was consistent with the outputs of the three implemented entropy-

based feature selection algorithms. The rankings of the features with respect to the CDR 

category obtained for each fold are shown in Supplementary Figures S5 - S14. 

Probabilistic dependencies among key features 

A total of 589 subjects with a complete data set of GM, CSF, PiB-PET, ApoE genotype, age 

and cognitive/ functional assessments collected over the period of 4.5 years was used for BN 

modelling. Prior to learning, domain knowledge was identified to aid the BN structure learning 

process (see Methods section for more details). The optimized BN structure via 10-fold CV 

(with AUC of 0.82) is shown in Fig. 3. Here, each rectangle corresponds to a domain variable 

while arrows denote probabilistic dependencies between associated variables. Thicker 

arrows reflect stronger influences between variables (determined by the p-value of the 

corresponding influence). Example of realizations of BN structures extracted from different 

folds during the cross validation procedure are shown in Supplementary Figure S15. The 

BNs in Supplementary Figure S15 look generally similar to the BN in Fig. 3, with most of the 

variations coming from the weaker (less probable) connections.  

Fig. 3 shows that for the predisposing factors, CDR is directly influenced by CSF, 

followed by GM and PiB-PET, while age and ApoE indirectly influence CDR via GM, PiB-PET, 

and CSF. The probabilistic influences from PiB-PET to GM and CSF, and that from GM to 

CSF are also discovered by the BN. In terms of psychological/functional assessments, the 

BN reveals that the probabilistic influences between CDR and psychological/functional 

assessments are much stronger than those between predisposing indicators/biomarkers and 
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CDR. CDR is most strongly linked to MMSE, followed by LMDR, then LMIR. The BN also 

shows the directly probabilistic dependency from LMDR to LMIR. The BN model constructed 

using predisposing indicators/biomarkers and their direct/indirect influences on the CDR 

score achieved the multi-class classification accuracy (MCA) of 0.72, 95%CI [0.59, 0.83] and 

AUC of 0.81.  

 

 

 

Fig. 3. Optimized Bayesian network (BN) structure via 10-fold CV with probabilistic 

dependencies among predisposing factors, psychological/functional assessments, and AD 

severity. ApoE: apolipoprotein E genotype; GM: grey matter volume; CSF: cerebrospinal volume; PiB-

PET: Pittsburgh compound B - positron-electron tomography; CDR: clinical dementia rating; MMSE: 

mini-mental state examination; LMIR/LMDR: logical memory immediately/delayed recall. BN is 

constructed based on the complete data. The thickness of the arrows represents the strength of the 

probabilistic influence between features. CDR is directly influenced by neuroimaging-based CSF, GM, 

and PiB-PET, while indirectly influenced by age and ApoE. The probabilistic influences between CDR 

and psychological/functional assessments are much stronger than those between predisposing 

indicators/biomarkers and CDR. 
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Dynamic changes of probabilistic dependencies in network structure 

Taking advantage of the available longitudinal dataset, we constructed BNs across 2 

different time points (BL and at least once at a later time during the M18-54 time interval) for 

two groups of participants. Group 1 consisted of 197 subjects at BL and 130 subjects 

assessed at least once within the M18-M54 time interval (referred to as ‘Later time’). Group 2 

included the same 133 participants at both BL and the ‘Later time’. Figs. 4 shows BNs 

constructed for Group 1 at BL (Fig. 4A), Group 1 at M18-54 (Fig. 4B), Group 2 at BL (Fig. 

4C), Group 2 at M18-54 (Fig. 4D).  

Given Group 1, the obtained BN at BL showed a sensitivity of 0.82 and specificity of 0.60 

for healthy control, a sensitivity of 0.41 and specificity of 0.78 for very mild AD, a sensitivity of 

0.33 and specificity of 0.96 for mild/moderate AD (Supplementary Table S3). The MCA and 

AUC for the BN model based on the Group 1 data was 0.67 and 0.80 respectively.  

As the distributions of CDR categories at a later time are different from those at BL, 

some probabilistic dependencies at a later time may differ from those at BL. In particular, 

there are 6% (12/197) mild/moderate AD patients at BL compared to 12% (15/130) at a later 

time. Compared to the BN at BL (Fig. 4 A), the BN at a later time (Fig. 4 B) (MCA = 0.82, 

AUC = 0.81) retains most of the BN structure. However, the BN in Fig. 4 B includes an 

indirect influence between age and CDR through CSF, GM, and PiB-PET, instead of direct 

influencing CDR as it does at BL. Further, CDR is now directly influenced by ApoE even 

stronger than by CSF. This indicates ApoE may become an important biomarker for AD 

severity over time. MMSE maintains a strongly direct influence from CDR. The significant 

change from the BN at BL is the probabilistic dependencies between logical memory recall 

assessments and CDR, i.e., LMDR would become more important than LMIR.  

To provide further support to the dynamic changes of BNs constructed using the Group 1 

data (Figs. 4 A and B), we conducted the process of BN learning for Group 2 subjects, in 

which the same participants were assessed at both BL and ‘Later time’ (see Supplementary 
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Table S2). Since the BNs models were constructed using the same set of subjects at BL and 

‘Later time’, only time-evolved features were incorporated into the models. Therefore, ApoE 

genotype information was not included for BN learning.  

When comparing Group 2 BN models at BL (Fig. 4 C) and at ‘Later time’ (Fig. 4 D), we 

see that age did not directly influence CDR at ‘Later time’ while CSF became directly linked 

to CDR. In addition, CDR was influenced by PiB-PET more strongly than GM and CSF. More 

importantly, psychological/functional assessments showed again much stronger influence on 

CDR than age and imaging features. For both BNs, the direct influences on AD severity are 

GM and PiB-PET, which are in turn directly influenced by age and indirectly influenced by 

age via CSF and/or GM. This may suggest that GM, PiB-PET, and CSF could be important 

biomarkers for older cohorts. Overall, most of the relationships within the BNs constructed for 

Group 2 (Figs. 4 C and D) are consistent with those developed in BNs using the Group 1 

data. The differences arise only from the weaker connections, namely, GM-CSF-PiB-PET. 

The BNs’ MCAs/AUCs (Figs 4 C and D) at BL and ‘Later time’ are 0.74/0.89 and 0.84/0.92 

respectively. The sensitivity and specificity for each AD severity category is listed in 

Supplementary Table S3.  
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Fig. 4. Bayesian networks based on the complete data at different times. (A) Group 1 data at BL 

(197 participants). (B) Group 1 data, assessments conducted at least once during the M18-54 time 

interval (130 participants). (C) Group 2 longitudinal data at BL (133 participants) including time-

evolved features. (D) Group 2 longitudinal data, assessments conducted at least once during the M18-

54 time interval including time-evolved features. The thickness of arrows represents the strength of the 

probabilistic influences between variables. As the Group 2 set uses longitudinal data focuses, the 

ApoE feature was disregarded due to its unchanging nature.  

Bayesian network identified predisposing indicators and biomarkers for 

classification of AD severity 

We now make use of the key predisposing factors and biomarkers and their relations 

identified by the BNs for classification of AD severity. In order to use a larger volume of data, 

we considered all available complete data samples regardless of time point. Supplementary 

Table S2 (bottom panel) lists data distribution across four AD severity categories (i.e. normal 

controls, very mild, mild, and moderate AD), for different combinations of predisposing 
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factors and biomarkers. For example, we considered a total of 1480 subjects with recorded 

age and CDR metric; this number was reduced to 1454 records when ApoE was included in 

the construction of BNs.  

Fig. 5 shows the AUC values calculated for BNs constructed based on different 

combinations of predisposing factors/biomarkers without ApoE (circled markers) and with 

ApoE (squared markers). The BN models using individual markers, i.e. CSF, GM, PiB-PET, 

and age, provide relatively lower AUC in identifying AD severity, compared to their 

combinations. Only one BN model based on the combination of AD markers, specifically Age 

and PiB-PET, achieved lower AUC than BNs constructed using individual features.  

The BN model incorporating all imaging biomarkers (i.e., GM+CSF+PiB-PET) was found 

to have the highest AUC of 0.82 while the BN model constructed with biomarkers and age 

(i.e., age+GM+CSF+PiB-PET) reported AUC of 0.81. These results show that using 

neuroimaging markers can provide sufficiently high detection of AD severity, despite the 

coarseness (total volume or active voxels) in the brain imaging data.  

The incorporation of ApoE feature into the construction of BN models generally improved 

the model performance with an exception of models including both GM or PiB-PET and ApoE. 

The combination of imaging markers and ApoE (i.e. GM+CSF+PiB-PET+ApoE) used for BN 

learning showed the highest AUC of 0.82, followed by the combination of age, imaging 

markers, and ApoE (i.e. age+GM+CSF+PiB-PET+ApoE) with AUC of 0.81.  
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Fig. 5. Classification accuracy (AUC) of individual predisposing indicators and biomarkers and 

their combinations with respect to CDR. Circled markers: BN models constructed using individual 

as well as combinations of predisposing factors/biomarkers without ApoE. Squared markers: BN 

models constructed using individual as well as combinations of predisposing factors/biomarkers with 

ApoE. The incorporation of ApoE into the BN structure generally improved the model performance. 

Finally, we constructed BN models for which the measure of AD severity was able to be 

directly or indirectly influenced by predisposing factors (i.e. age, GM, CSF, PiB-PET, ApoE) 

as well as the output of psychological/functional assessments. We specifically tested the 

combination of all predisposing factors with individual as well as different configurations of 

cognitive/functional tests (Table 1). We observed that BN models incorporating 

cognitive/functional assessments consistently achieved higher AUC than models based 

solely on predisposing factors. The best model performance was achieved for a set of age, 

ApoE, neuroimaging markers and all 3 functional/cognitive assessments as well as for a 

combination of neuro-markers, age, ApoE, MMSE, and LMDR. In both cases, we reported 

AUC of 0.91 and MCA of 0.80, 95%CI [0.67, 0.89]. 
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Table 1. The AUC and MCA performance of the BN models constructed based on the 

combination of all predisposing factors with cognitive/functional assessments. 

Features AUC MCA 

All predisposing factors 
(Age+GM+CSF+PiB_PET+ApoE4) 0.81 0.72, 95%CI [0.59,0.83] 

All predisposing factors + MMSE 0.86 0.76, 95%CI [0.63,0.86] 

All predisposing factors + LMIR 0.85 0.73, 95%CI [0.60,0.84] 

All predisposing factors + LMDR 0.83 0.69, 95%CI [0.54,0.79] 

All predisposing factors + MMSE + LMIR 0.89 0.81, 95%CI [0.69,0.90] 

All predisposing factors + MMSE + LMDR 0.91 0.80, 95%CI [0.67,0.89] 

All predisposing factors + LMIR + LMDR 0.87 0.75, 95%CI [0.62,0.85] 

All predisposing factors + MMSE + LMIR + LMDR 0.91 0.80, 95%CI [0.67,0.89] 

	

	

Discussion 

This study has successfully applied a hybrid computational approach, which includes BN 

based data modelling, to holistically and efficiently identify multiple important factors, the 

strength of their probabilistic influences and their changes in relation to AD severity (based 

on CDR). This was performed on the heterogeneous 4.5 years AIBL data, which consists of 

rapidly and easily acquired coarse-grained data of various predisposing factors, biomarkers, 

and psychological/functional assessment scores.  

The BNs showed that age, MRI-based GM and CSF, and PiB-PET can directly influence 

AD severity. These 4 direct indicators, when combined, can substantially enhance the correct 

classification of AD severity categories in comparison to individual factors (AUC of ~0.83), 

despite the data being rather coarse-grained (e.g. total brain imaging volume or active voxel). 

Combining with an additional important (indirect) biomarker, ApoE, can increase the overall 

classification accuracy by about 3%. In fact, by adding the appropriate cognitive/functional 

assessment features, we could substantially improve the model. Hence BNs across different 
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time points can be used as a quick and sufficiently accurate identification method of 

important markers of AD severity. Further, all the BNs consistently showed that 

psychological/functional assessments were strongly influenced by AD severity. Hence, our 

model supports the use of these assessments as an important component of the clinical 

diagnostic process.  

Our results are consistent with many studies on AD, including those based on the AIBL 

data. For instance, our BN identified the important role of CSF volume as a biomarker for 

detecting and predicting MCI and AD, similar to 32. Within the AIBL study/data, ApoE ε4 

allele has also been shown to be a biomarker for predicting cognitive decline over 18 

months33,34. However, it should be emphasized that our work did not subjectively pre-select 

the data types and perform limited correlation evaluation. The computational approach 

objectively integrates and evaluates a large portion of the data, before identifying the 

important factors through probabilistic dependencies using BNs. The reduced number of 

identified factors can in turn suggest a smaller, but more efficient, number of tests for 

identifying or predicting very mild or mild AD.  

To avoid subjective clinical classification and diagnosing of AD, we have used clinical 

dementia rating (CDR, which assesses 3 domains of cognition and 3 domains of function) as 

a more objective assessment for AD severity, namely categorizing severity into 5 categories: 

normal control, very mild, mild, moderate, and severe with CDR values of 0, 0.5, 1, 2, and 3, 

respectively 24. A recent work 26 has also used CDR instead of clinical diagnosis as a 

measure of AD severity. However the study scaled CDR into 3 categories: normal control, 

mild, and severe AD with CDR values of 0, 0.5, and others, and hence has a smaller range 

than ours while not strictly adhering to the CDR definition. Further, our work here justified 

CDR as an index of AD severity based on its high correlation with clinical diagnosis. 

With regards to computational approaches, a BN model for MCI and AD has previously 

been proposed35. However, the work demonstrated that manually constructed BNs are 

simpler and more readable for physicians than those fully automatically learned from data. In 
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our work, we provided a semi-automated modelling approach, in which prior knowledge was 

modelled manually according to domain experts and the BNs were constructed automatically 

using an appropriate learning algorithm (see Fig. 1). This resulted in a more informative BN 

that not only revealed probabilistic relations of various factors with AD severity, but also 

among themselves. Other studies using BN analyses on AD were limited to the use of 

biomarkers 10 or non-imaging data 38. In comparison, our work explored a wider variety of 

data. A more recent study has used a structural equation (latent variable) modelling 

approach to identify dependencies linking brain pathology to a wide range of cognitive 

assessments37,38. However, it is not clear how the probabilistic relationships among the 

heterogeneous data types would likely be. The most distinctive parts of our BN modelling 

work were the inclusion of data types across very different levels, and the discovery of the 

changes in probabilistic dependencies as the cohort age or convert to very mild or 

mild/moderate AD.  

Our present study can be extended in several ways. First, our modelling approach would 

need to be extended to handle data with missing values for larger sample size. Second, 

instead of using the convenient total MRI (GM, CSF, WM) volume, the MRI data can be 

segmented into vulnerable regions to be re-investigated. As the data size will be larger, other 

brain imaging modalities, such as FDG-PET, functional MRI, diffusion tensor imaging (DTI) 

and electroencephalography/magnetoencephalography (EEG/MEG), can also be jointly 

investigated. Third, it would be interesting to investigate larger datasets and with additional 

types of data, especially for conversion samples, e.g., the ADNI dataset. 

In conclusion, we have proposed an efficient hybrid computational approach to identify 

key features within heterogeneous coarse-grained data with respect to Alzheimer’s disease 

severity. The probabilistic relationships among the identified data features can be obtained 

using Bayesian network modelling, with multiple Bayesian networks used to model the 

relationships at different time. These key data features and their relationships can then be 

used for disease severity classification.  
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Methods 

Data description and distribution 

Data was collected by the AIBL study group. AIBL study methodology has been reported 

previously 21. Informed consent was obtained from all subjects. The usage of the AIBL data 

and our submission of the study have been approved by the AIBL Management Committee. 

Within the AIBL non-imaging dataset, there were a total of 861 participants at BL. However, 

only 262, 222, and 142 participants followed up the study after M18, M36, and M54, 

respectively. The data contained demographics, medical history, ApoE genotype, 

psychological/functional assessments, blood analyses, and clinical diagnoses. The brain 

imaging dataset consisted of structural MRI and PET data. We split the MRI data into 3 

complementary features: grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF) 

volumes, as they can be quickly obtained in comparison to segmented vulnerable regions. A 

total of 613 participants at BL had MRI scan, while only 188, 143, and 112 participants 

followed up the scan after M18, M36, and M54, respectively. The PET data is categorised 

into PiB- and FDG-PET data. Within the PiB-PET data, feature active voxels, was collected 

from 207, 177, 137, and 93 participants at BL, M18, M36, and M54, respectively. As the 

number of samples with complete FDG-PET data is very few, we exclude FDG-PET in this 

study. A detailed data description we considered is listed in Supplementary Table S1, with a 

total of 35 features involved.  

Classification of MCI and AD within the cohort were made according to established, 

internationally recognized criteria after thorough review by a multi-disciplinary group of 

academic clinicians experienced in the assessment, diagnosis and management of late-life 

cognitive disorders, particularly MCI and AD 21. We ignored a very small number of cases 

with unknown diagnosis and frontotemporal dementia (FTD). Data distribution across 

diagnostic categories over time is listed in Supplementary Table S4.  

Feature selection and data balancing 
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The feature selection process with 10-fold cross validation was applied exclusively to the 

model development set after setting aside a 10% (independent test set) of the complete data 

(see Fig. 1). Three entropy-based feature selection algorithms were used to select the most 

significant features with respect to clinical dementia rating (CDR). The algorithms are 

information gain (IG), information gain ratio (IGR), and symmetrical uncertainty (SU)39, which 

are defined respectively by 

 𝐼𝐺 = 𝐻 𝐶𝑙𝑎𝑠𝑠 + 𝐻 𝐴𝑡𝑡𝑖𝑏𝑢𝑡𝑒 − 𝐻(𝐶𝑙𝑎𝑠𝑠,𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) (1) 

 

 𝐼𝐺𝑅 =
𝐻 𝐶𝑙𝑎𝑠𝑠 + 𝐻 𝐴𝑡𝑡𝑖𝑏𝑢𝑡𝑒 − 𝐻(𝐶𝑙𝑎𝑠𝑠,𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)

𝐻 𝐴𝑡𝑡𝑖𝑏𝑢𝑡𝑒
 (2) 

 

 𝑆𝑈 = 2
𝐻 𝐶𝑙𝑎𝑠𝑠 + 𝐻 𝐴𝑡𝑡𝑖𝑏𝑢𝑡𝑒 − 𝐻(𝐶𝑙𝑎𝑠𝑠,𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)

𝐻 𝐴𝑡𝑡𝑖𝑏𝑢𝑡𝑒 + 𝐻 𝐶𝑙𝑎𝑠𝑠
 (3) 

 

where H is Shannon’s Entropy defined by 𝐻 𝑋 = − 𝑃(𝑋!) log! 𝑃(𝑋!)!
!!! , with P as the 

probability function40. These were used to find weights of discrete attributes basing on their 

correlation with the target classes. The advantage of the entropy filter is that it makes no 

assumptions about the nature of the data and no disturbances occurring in dynamic 

environments. The technique demonstrated its effectiveness in a range of applications e.g. in 

gene selection for cancer classification41.  

It has been shown that the class imbalance in a data set introduces a bias in the 

performance of predictive models due to their preference towards the majority class42. We 

therefore balanced the unbalanced disease classes in the model development set by 

resampling the original data and creating synthetic instances using the Synthetic Minority 

oversampling technique (SMOTE)43. 

Data discretization 
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The class-attribute interdependence maximization (CAIM) algorithm 30 was applied to 

discretize data features with respect to CDR categories. The CAIM criterion measures the 

dependency between the class variable and the discretization variable for attribute, and is 

defined as:  

 
𝐶𝐴𝐼𝑀 =

𝑚𝑎𝑥!!
𝑀!!

!
!!!

𝑛
 

(4) 

 

for 𝑟 = 1, 2,… , 𝑛, in which 𝑚𝑎𝑥! is the maximum value within the rth column of the quanta 

matrix (also called a contingency table 30). 𝑀!! is the total number of continuous values of 

attribute that are within the interval.  

Bayesian network modelling 

Bayesian network (BN) was implemented to provide a representation of probabilistic 

dependencies within the heterogenous AD data using directed acyclic graphs. The nodes in 

the BN corresponded to the domain variables and the arcs reflected the probabilistic 

dependencies between associated variables44. Given a set of n variables, 𝑋 = 𝑋!,𝑋!,⋯ ,𝑋! , 

a BN represents a joint probability distribution on 𝑋, 𝑃 𝑋 , defined as  

 𝑃 𝑋 = 𝑃 𝑋! 𝑝𝑎 𝑋!
!!∈!

, 𝑖 = 1, 2,⋯ , 𝑛 (5) 

 

where 𝑝𝑎 𝑋!  is the set of parents of 𝑋!.  

In order to construct BN structures that reflect probabilistic dependencies in the real data, 

we applied a combination of prior knowledge and data-oriented modelling. We first used 

expert knowledge, including current diagnostic criteria and input from physicians, to select 

relevant AD indicators/markers and then, identified causal and forbidden relationships among 

variables as structural constraints for BN learning. This procedure allowed us to search for 

optimal network structures over a restricted topological space and hence, significantly 

improve computational efficiency.  Note that the constraints were not exhaustive i.e. there 
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were multiple BNs that adhered to a given set of constraints. Accordingly, predisposing 

indicators/biomarkers were presumed to influence directly/indirectly the measure of AD 

severity, which in turn could affect the output of psychological/functional assessments. 

Neuroimaging factors could influence each other, as well as psychological/functional 

assessments. Once relevant constraints were identified, a score-based algorithm was 

implemented for learning the structures of a BN40. The Hill Climbing (HC) score-based 

learning technique was used to identify high-scoring network structures by evaluating local 

changes to a potential network solution and selecting the one that maximized the score 

function45. The following scoring functions were tested: K2 score46, Bayesian Dirichlet 

equivalent (BDE) score47, modified Bayesian Dirichlet equivalent (MBDE) score47, and 

Bayesian Information Criterion (BIC) metric48.  

In order to evaluate the capability of various fitting functions of BNs and compare 

performance of different BN structures, we applied the 10-fold cross validation (CV) 

procedure49. Given a model development set (see Fig. 1), we randomly partitioned the data 

into k = 10 subsets. Each subset (validation set) was used in turn to validate the model fitted 

on the remaining k - 1 subsets (training set). The log-likelihood loss of the validation set for 

each BN fitted from the training set was computed. Loss estimates of each k subset were 

then combined to determine an overall loss and to identify the optimal scoring criterion. 

The generalizability of trained BN models was evaluated on an independent test set 

partitioned from the original data (10% of the complete dataset). Given a smaller set of 

longitudinal data, we used 30% of the original data for the unseen test set to obtain 

more reliable estimation on the testing accuracy of BN models. The criteria retained for 

comparison of BN models were: the area under the curve of the receiving operator 

characteristics curve (AUC), multi-class classification accuracy (MAC), sensitivity and 

specificity, all reported on the independent test set50. 

Hardware and software 
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All computations, including data pre-processing, BN construction and validation, and 

visualisation, were performed using the R statistical software, version 1.0.136 47 (R 

Foundation for Statistical Computing, Vienna, Austria)51. 
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