437 research outputs found

    Implications of using 2 m versus 30 m spatial resolution data for suburban residential land change modeling

    Get PDF
    This study assesses the advantages and disadvantages of using 2 m spatial resolution data versus 30 m resolution data for a simulation model of land-use and land-cover change (LUCC). The model projects LUCC from 2005 to 2055 in the town of Lynnfield, Massachusetts, USA. This article describes four scenario storylines and then projects land-use and land-cover under each of the four scenarios with 2 m data and again with 30 m data. The disagreement between the 2 m output and its corresponding 30 m output ranges between 5.7% and 11.0% of the town. The disagreement due to allocation over small distances is greater than the disagreement due to the quantity of new residential growth. The projected quantities of new residential land-use in 2055 differ between the two resolutions by 1% of the town, whereas the visual differences in the spatial allocations are distinct and substantial. The results for this case study show that 30 m resolution data provides several practical and theoretical advantages over 2 m resolution data, due mainly to the fact that the 30 m resolution data match more closely the size of the patches of change

    Magnetization of small lead particles

    Full text link
    The magnetization of an ensemble of isolated lead grains of sizes ranging from below 6 nm to 1000 nm is measured. A sharp disappearance of Meissner effect with lowering of the grain size is observed for the smaller grains. This is a direct observation by magnetization measurement of the occurrence of a critical particle size for superconductivity, which is consistent with Anderson's criterion.Comment: 7 pages, 5 figures, Submitted to PR

    Calculations of the Far-Wing Line Profiles of Sodium and Potassium in the Atmospheres of Substellar-Mass Objects

    Get PDF
    At the low temperatures achieved in cool brown dwarf and hot giant planet atmospheres, the less refractory neutral alkali metals assume an uncharacteristically prominent role in spectrum formation. In particular, the wings of the Na-D (5890 \AA) and K I (7700 \AA) resonance lines come to define the continuum and dominate the spectrum of T dwarfs from 0.4 to 1.0 \mic. Whereas in standard stellar atmospheres the strengths and shapes of the wings of atomic spectral lines are rarely needed beyond 25 \AA of a line center, in brown dwarfs the far wings of the Na and K resonance lines out to 1000's of \AA detunings are important. Using standard quantum chemical codes and the Unified Franck-Condon model for line profiles in the quasi-static limit, we calculate the interaction potentials and the wing line shapes for the dominant Na and K resonance lines in H2_2- and helium-rich atmospheres. Our theory has natural absorption profile cutoffs, has no free parameters, and is readily adapted to spectral synthesis calculations for stars, brown dwarfs, and planets with effective temperatures below 2000 Kelvin.Comment: 14 pages, Latex, 7 figures in JPEG format, accepted for publication in the Astrophysical Journa

    Optical control of 4f orbital state in rare-earth metals

    Full text link
    Information technology demands continuous increase of data-storage density. In high-density magnetic recording media, the large magneto-crystalline anisotropy (MCA) stabilizes the stored information against decay through thermal fluctuations. In the latest generation storage media, MCA is so large that magnetic order needs to be transiently destroyed by heat to enable bit writing. Here we show an alternative approach to control high-anisotropy magnets: With ultrashort laser pulses the anisotropy itself can be manipulated via electronic state excitations. In rare-earth materials like terbium metal, magnetic moment and high MCA both originate from the 4f electronic state. Following infrared laser excitation 5d-4f electron-electron scattering processes lead to selective orbital excitations that change the 4f orbital occupation and significantly alter the MCA. Besides these excitations within the 4f multiplet, 5d-4f electron transfer causes a transient change of the 4f occupation number, which, too, strongly alters the MCA. Such MCA change cannot be achieved by heating: The material would rather be damaged than the 4f configuration modified. Our results show a way to overcome this limitation for a new type of efficient magnetic storage medium. Besides potential technological relevance, the observation of MCA-changing excitations also has implications for a general understanding of magnetic dynamics processes on ultrashort time scales, where the 4f electronic state affects the angular momentum transfer between spin system and lattice.Comment: Manuscript (14 pages, 3 figures) and Supplementary Information (22 pages, 9 figures

    Secondary metabolites of the sponge-derived fungus Acremonium persicinum

    Get PDF
    This study reports the isolation and characterization of six new acremine metabolites, 5-chloroacremine A (4), 5-chloroacremine H (5), and acremines 0 (6), P (7), Q(8), and R (9), together with the known acremines A (1), F (2), and N (3) from the fungus Acremonium persicinum cultured from the marine sponge Anomoianthella rubra. The relative configuration of acremine F (2) was determined by analyses of proton coupling constant values and NOESY data, and the absolute configuration confirmed as (IS, 4S, 6R) by X-ray crystallographic analysis of the borate ester derivative 15. Acremines O, P, and R were each shown to be of 8R configuration by H-1 NMR analyses of MPA esters. The relative configurations suggested for acremines P and Q were each deduced by molecular modeling together with NOESY and coupling constant data. The (3)J(H-C) values in acremine P were measured using the pulse sequence EXSIDE, and the observed (3)J(H8-C4) of 5.4 Hz and small (3)J(H-C) values

    A verification protocol for the probe sequences of Affymetrix genome arrays reveals high probe accuracy for studies in mouse, human and rat

    Get PDF
    BACKGROUND: The Affymetrix GeneChip technology uses multiple probes per gene to measure its expression level. Individual probe signals can vary widely, which hampers proper interpretation. This variation can be caused by probes that do not properly match their target gene or that match multiple genes. To determine the accuracy of Affymetrix arrays, we developed an extensive verification protocol, for mouse arrays incorporating the NCBI RefSeq, NCBI UniGene Unique, NIA Mouse Gene Index, and UCSC mouse genome databases. RESULTS: Applying this protocol to Affymetrix Mouse Genome arrays (the earlier U74Av2 and the newer 430 2.0 array), the number of sequence-verified probes with perfect matches was no less than 85% and 95%, respectively; and for 74% and 85% of the probe sets all probes were sequence verified. The latter percentages increased to 80% and 94% after discarding one or two unverifiable probes per probe set, and even further to 84% and 97% when, in addition, allowing for one or two mismatches between probe and target gene. Similar results were obtained for other mouse arrays, as well as for human and rat arrays. Based on these data, refined chip definition files for all arrays are provided online. Researchers can choose the version appropriate for their study to (re)analyze expression data. CONCLUSION: The accuracy of Affymetrix probe sequences is higher than previously reported, particularly on newer arrays. Yet, refined probe set definitions have clear effects on the detection of differentially expressed genes. We demonstrate that the interpretation of the results of Affymetrix arrays is improved when the new chip definition files are used

    Impact on diarrhoeal illness of a community educational intervention to improve drinking water quality in rural communities in Puerto Rico

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Waterborne disease is a major risk for small water supplies in rural settings. This study was done to assess the impact of an educational intervention designed to improve water quality and estimate the contribution of water to the incidence of diarrhoeal disease in poor rural communities in Puerto Rico a two-part study was undertaken.</p> <p>Methods</p> <p>An educational intervention was delivered to communities relying on community water supplies. This intervention consisted of student operators and administrators supervising and assisting community members who voluntarily "operate" these systems. These voluntary operators had no previous training and were principally concerned with seeing that some water was delivered. The quality of that water was not something they either understood or addressed. The impact of this intervention was measured through water sampling for standard bacteriological indicators and a frank pathogen. In addition, face-to-face epidemiological studies designed to determine the base-line occurrence of diarrhoeal disease in the communities were conducted. Some 15 months after the intervention a further epidemiological study was conducted in both the intervention communities and in control communities that had not received any intervention.</p> <p>Results</p> <p>Diarrhoeal illness rates over a four week period prior to the intervention were 3.5%. <it>Salmonella </it>was isolated from all of 5 distributed samples prior to intervention and from only 2 of 12 samples after the intervention. In the 15 months follow-up study, illness rates were lower in the intervention compared to control communities (2.5% <it>vs </it>3.6%%) (RR = 0.70, 95%CI 0.43, 1.15), though this was not statistically significant. However, in the final Poisson regression model living in an intervention system (RR = 0.318; 95%CI 0.137 - 0.739) and owning a dog (RR = 0.597, 95%CI 0.145 - 0.962) was negatively associated with illness. Whilst size of system (RR = 1.006, 95%CI 1.001 - 1.010) and reporting problems with sewage system (RR = 2.973, 95%CI 1.539 - 5.744) were positively associated with illness.</p> <p>Conclusions</p> <p>Educational interventions directed both at identified individuals and the community in general in small communities with poor water quality is a way of giving communities the skills and knowledge to manage their own drinking water quality. This may also have important and sustainable health benefits, though further research preferably using a randomised control trial design is needed.</p
    corecore