181 research outputs found

    Conversion of the Kunitz-type module of collagen VI into a highly active trypsin inhibitor by site-directed mutagenesis.

    No full text
    The recombinant Kunitz protease inhibitor module (domain C5) of human collagen α3(VI) chain was previously shown to lack inhibitory activity for proteases with trypsin-like specificity and some other proteases. We have now prepared mutants in the binding loop region including the P1′ site (D2889 → A), the P2′ site (F2890 → R) and the P3 site (T2886 → P) and in a more remote region (W2907 → V) either as individual substitutions or combinations of them. These mutants were analyzed for their kinetics of binding to trypsin by surface plasmon resonance and for their capacity to inhibit various proteases. Single substitutions (D → A, T → P, W → V) showed an effect only for D → A which bound to trypsin with Kd= 0.25 μM. A 25–100-fold increase in affinity was observed for the double mutants T → P/D → A and F → R/D → A and approached the affinity of aprotinin (Kd≈0.01 nM) in two different triple mutants. These affinities correlated well with the inhibitory capacities of the mutants for trypsin in the cleavage of a large protein and a small peptide substrate. A similar but not completely identical improvement in inhibitory capacity was also observed for leucocyte elastase but not for thrombin. These data could be interpreted in terms of steric interferences or lack of hydrogen bonding of a few critical residues based on three-dimensional structures available for the C5 domain

    Enter exitrons

    Get PDF
    Staiger D, Simpson GG. Enter exitrons. Genome Biology. 2015;16(1): 136.Exitrons are exon-like introns located within protein-coding exons. Removal or retention of exitrons through alternative splicing increases proteome complexity and thus adds to phenotypic diversity

    Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells

    Get PDF
    In vitro differentiation of human pluripotent stem cells (hPSCs) recapitulates early aspects of human embryogenesis, but the underlying processes are poorly understood and controlled. Here we show that modulating the bulk cell density (BCD: cell number per culture volume) deterministically alters anteroposterior patterning of primitive streak (PS)-like priming. The BCD in conjunction with the chemical WNT pathway activator CHIR99021 results in distinct paracrine microenvironments codifying hPSCs towards definitive endoderm, precardiac or presomitic mesoderm within the first 24 h of differentiation, respectively. Global gene expression and secretome analysis reveals that TGFß superfamily members, antagonist of Nodal signalling LEFTY1 and CER1, are paracrine determinants restricting PS progression. These data result in a tangible model disclosing how hPSC-released factors deflect CHIR99021-induced lineage commitment over time. By demonstrating a decisive, functional role of the BCD, we show its utility as a method to control lineage-specific differentiation. Furthermore, these findings have profound consequences for inter-experimental comparability, reproducibility, bioprocess optimization and scale-up.DFG/REBIRTHDFG/EXC62/1DFG/ZW 64/4-1DFG/MA 2331/16-1BMBF/13N12606BMBF/StemBANCCEU H2020/66872

    Synonymous GATA2 mutations result in selective loss of mutated RNA and are common in patients with GATA2 deficiency

    Get PDF
    Deficiency of the transcription factor GATA2 is a highly penetrant genetic disorder predisposing to myelodysplastic syndromes (MDS) and immunodeficiency. It has been recognized as the most common cause underlying primary MDS in children. Triggered by the discovery of a recurrent synonymousGATA2variant, we systematically investigated 911 patients with phenotype of pediatric MDS or cellular deficiencies for the presence of synonymous alterations inGATA2. In total, we identified nine individuals with five heterozygous synonymous mutations: c.351C>G, p.T117T (N = 4); c.649C>T, p.L217L; c.981G>A, p.G327G; c.1023C>T, p.A341A; and c.1416G>A, p.P472P (N = 2). They accounted for 8.2% (9/110) of cases with GATA2 deficiency in our cohort and resulted in selective loss of mutant RNA. While for the hotspot mutation (c.351C>G) a splicing error leading to RNA and protein reduction was identified, severe, likely late stage RNA loss without splicing disruption was found for other mutations. Finally, the synonymous mutations did not alter protein function or stability. In summary, synonymousGATA2substitutions are a new common cause of GATA2 deficiency. These findings have broad implications for genetic counseling and pathogenic variant discovery in Mendelian disorders

    Organic Geochemical Studies. I. Molecular Criteria for Hydrocarbon Genesis

    Get PDF
    In recent years the search for life-forms at the earliest periods of geological time has been continued not only at the morphological level but also at the molecular level. This has been possible as a result of the increase in the biochemical knowledge and with the advent of analytical techniques that are capable of describing the intimate molecular architecture of individual molecules in acute detail. The fundamental premises upon which this organic geochemical approach rest are the following: that certain molecules, possessing a characteristic structural skeleton, show a reasonable stability to degradation over long periods of geological time; that their structural specificity can be understood in terms of known biosynthetic sequences; and that their formation by any non-biological means is of negligible probability. In this manuscript it is proposed to critically re-examine these premises and to establish criteria whereby one can differentiate molecules derived from biological systems from those that have their origin in non-biological processes. The importance of establishing such criteria lies in the significance these criteria have in determining whether life exists, or has existed, on other planets. Within the very near future it may be possible to provide an initial answer to this question when the first lunar samples are returned to the earth for analysis

    Perlecan Maintains microvessel integrity in vivo and modulates their formation in vitro

    Get PDF
    Perlecan is a heparan sulfate proteoglycan assembled into the vascular basement membranes (BMs) during vasculogenesis. In the present study we have investigated vessel formation in mice, teratomas and embryoid bodies (EBs) in the absence of perlecan. We found that perlecan was dispensable for blood vessel formation and maturation until embryonic day (E) 12.5. At later stages of development 40% of mutant embryos showed dilated microvessels in brain and skin, which ruptured and led to severe bleedings. Surprisingly, teratomas derived from perlecan-null ES cells showed efficient contribution of perlecan-deficient endothelial cells to an apparently normal tumor vasculature. However, in perlecan-deficient EBs the area occupied by an endothelial network and the number of vessel branches were significantly diminished. Addition of FGF-2 but not VEGF165 rescued the in vitro deficiency of the mutant ES cells. Furthermore, in the absence of perlecan in the EB matrix lower levels of FGFs are bound, stored and available for cell surface presentation. Altogether these findings suggest that perlecan supports the maintenance of brain and skin subendothelial BMs and promotes vasculo- and angiogenesis by modulating FGF-2 function

    Alternative splicing of barley clock genes in response to low temperature:evidence for alternative splicing conservation

    Get PDF
    Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement
    • …
    corecore