235 research outputs found

    Measurement and simulation of anisotropic magnetoresistance in single GaAs/MnAs core/shell nanowires

    Full text link
    We report four probe measurements of the low field magnetoresistance in single core/shell GaAs/MnAs nanowires synthesized by molecular beam epitaxy, demonstrating clear signatures of anisotropic magnetoresistance that track the field-dependent magnetization. A comparison with micromagnetic simulations reveals that the principal characteristics of the magnetoresistance data can be unambiguously attributed to the nanowire segments with a zinc blende GaAs core. The direct correlation between magnetoresistance, magnetization and crystal structure provides a powerful means of characterizing individual hybrid ferromagnet/semiconductor nanostructures.Comment: Submitted to Applied Physics Letters; some typos corrected and a defective figure replace

    Domain wall formation and spin reorientation in finite-size magnetic systems

    Full text link
    We investigate the formation of stable one-dimensional N\'eel walls in a ferromagnetic slab with finite thickness and finite width. Taking into account the dipolar, the exchange and the uniaxial anisotropic crystalline field interactions, we derive an approximative analytical self-consistent expression that gives the wall width in terms of ratios between the three different energy scales of the problem. We also show that, even when the crystalline anisotropy does not favour the formation of domain walls, they can yet be formed due to the dipolar interaction and the finiteness of the system. Moreover, using a Stoner-Wohlfarth approach, we study the magnetization reorientation inside the domains under the action of an external magnetic field and obtain the respective hysteresis loops, showing that their shapes change from squared to inclined as the width of the slab varies. Finally, we discuss possible applications of this model to describe qualitatively some recent experimental data on thin films of MnAs grown over GaAs substrates.Comment: 11 pages, 10 eps figure

    Large-area synthesis of ferromagnetic Fe5x_{5-x}GeTe2_{2}/graphene van der Waals heterostructures with Curie temperature above room temperature

    Get PDF
    Van der Waals (vdW) heterostructures combining layered ferromagnets and other two-dimensional (2D) crystals are promising building blocks for the realization of ultra-compact devices with integrated magnetic, electronic and optical functionalities. Their implementation in various technologies depends strongly on the development of a bottom-up scalable synthesis approach allowing to realize highly uniform heterostructures with well-defined interfaces between different 2D layered materials. It also requires that each material component of the heterostructure remains functional, which ideally includes ferromagnetic order above room temperature for 2D ferromagnets. Here, we demonstrate large-area growth of Fe5x_{5-x}GeTe2_{2}/graphene heterostructures achieved by vdW epitaxy of Fe5x_{5-x}GeTe2_{2} on epitaxial graphene. Structural characterization confirmed the realization of a continuous vdW heterostructure film with a sharp interface between Fe5x_{5-x}GeTe2_{2} and graphene. Magnetic and transport studies revealed that the ferromagnetic order persists well above 300 K with a perpendicular magnetic anisotropy. In addition, epitaxial graphene on SiC(0001) continues to exhibit a high electronic quality. These results represent an important advance beyond non-scalable flake exfoliation and stacking methods, thus marking a crucial step toward the implementation of ferromagnetic 2D materials in practical applications

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    RGB-D Odometry and SLAM

    Full text link
    The emergence of modern RGB-D sensors had a significant impact in many application fields, including robotics, augmented reality (AR) and 3D scanning. They are low-cost, low-power and low-size alternatives to traditional range sensors such as LiDAR. Moreover, unlike RGB cameras, RGB-D sensors provide the additional depth information that removes the need of frame-by-frame triangulation for 3D scene reconstruction. These merits have made them very popular in mobile robotics and AR, where it is of great interest to estimate ego-motion and 3D scene structure. Such spatial understanding can enable robots to navigate autonomously without collisions and allow users to insert virtual entities consistent with the image stream. In this chapter, we review common formulations of odometry and Simultaneous Localization and Mapping (known by its acronym SLAM) using RGB-D stream input. The two topics are closely related, as the former aims to track the incremental camera motion with respect to a local map of the scene, and the latter to jointly estimate the camera trajectory and the global map with consistency. In both cases, the standard approaches minimize a cost function using nonlinear optimization techniques. This chapter consists of three main parts: In the first part, we introduce the basic concept of odometry and SLAM and motivate the use of RGB-D sensors. We also give mathematical preliminaries relevant to most odometry and SLAM algorithms. In the second part, we detail the three main components of SLAM systems: camera pose tracking, scene mapping and loop closing. For each component, we describe different approaches proposed in the literature. In the final part, we provide a brief discussion on advanced research topics with the references to the state-of-the-art.Comment: This is the pre-submission version of the manuscript that was later edited and published as a chapter in RGB-D Image Analysis and Processin

    Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p + p interactions at the CERN Super Proton Synchrotron

    Get PDF
    Results on two-particle ΔηΔϕ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the Epos and UrQMD models.ISSN:1434-6044ISSN:1434-605

    Long-term safety and efficacy of eculizumab in generalized myasthenia gravis

    Get PDF
    corecore