1,249 research outputs found
A comparative DFT study of electronic properties of 2H-, 4H- and 6H-SiC(0001) and SiC(000-1) clean surfaces: Significance of the surface Stark effect
Electric field, uniform within the slab, emerging due to Fermi level pinning
at its both sides is analyzed using DFT simulations of the SiC surface slabs of
different thickness. It is shown that for thicker slab the field is nonuniform
and this fact is related to the surface state charge. Using the electron
density and potential profiles it is proved that for high precision simulations
it is necessary to take into account enough number of the Si-C layers. We show
that using 12 diatomic layers leads to satisfactory results. It is also
demonstrated that the change of the opposite side slab termination, both by
different type of atoms or by their location, can be used to adjust electric
field within the slab, creating a tool for simulation of surface properties,
depending on the doping in the bulk of semiconductor. Using these simulations
it was found that, depending on the electric field, the energy of the surface
states changes in a different way than energy of the bulk states. This
criterion can be used to distinguish Shockley and Tamm surface states. The
electronic properties, i.e. energy and type of surface states of the three
clean surfaces: 2H-, 4H-, 6H-SiC(0001), and SiC() are analyzed and
compared using field dependent DFT simulations.Comment: 18 pages, 10 figures, 4 table
The formation of a functional retinal pigment epithelium occurs on porous polytetrafluoroethylene substrates independently of the surface chemistry
Subretinal transplantation of functioning retinal pigment epithelial (RPE) cells may have the potential to preserve or restore vision in patients affected by blinding diseases such as age-related macular degeneration (AMD). One of the critical steps in achieving this is the ability to grow a functioning retinal pigment epithelium, which may need a substrate on which to grow and to aid transplantation. Tailoring the physical and chemical properties of the substrate should help the engineered tissue to function in the long term. The purpose of the study was to determine whether a functioning monolayer of RPE cells could be produced on expanded polytetrafluoroethylene substrates modified by either an ammonia plasma treatment or an n-Heptylamine coating, and whether the difference in surface chemistries altered the extracellular matrix the cells produced. Primary human RPE cells were able to form a functional, cobblestone monolayer on both substrates, but the formation of an extracellular matrix to exhibit a network structure took months, whereas on non-porous substrates with the same surface chemistry, a similar appearance was observed after a few weeks. This study suggests that the surface chemistry of these materials may not be the most critical factor in the development of growth of a functional monolayer of RPE cells as long as the cells can attach and proliferate on the surface. This has important implications in the design of strategies to optimise the clinical outcomes of subretinal transplant procedures
Cytochrome oxidase subunit VI of Trypanosoma brucei is imported without a cleaved presequence and is developmentally regulated at both RNA and protein levels
Mitochondrial respiration in the African trypanosome undergoes dramatic developmental stage regulation. This requires co-ordinated control of components encoded by both the nuclear genome and the kinetoplast, the unusual mitochondrial genome of these parasites. As a model for understanding the co-ordination of these genomes, we have examined the regulation and mitochondrial import of a nuclear-encoded component of the cytochrome oxidase complex, cytochrome oxidase subunit VI (COXVI). By generating transgenic trypanosomes expressing intact or mutant forms of this protein, we demonstrate that COXVI is not imported using a conventional cleaved presequence and show that sequences at the N-terminus of the protein are necessary for correct mitochondrial sorting. Analyses of endogenous and transgenic COXVI mRNA and protein expression in parasites undergoing developmental stage differentiation demonstrates a temporal order of control involving regulation in the abundance of, first, mRNA and then protein. This represents the first dissection of the regulation and import of a nuclear-encoded protein into the cytochrome oxidase complex in these organisms, which were among the earliest eukaryotes to possess a mitochondrion
The ISM in spiral galaxies: can cooling in spiral shocks produce molecular clouds?
We investigate the thermodynamics of the ISM and the formation of molecular
hydrogen through numerical simulations of spiral galaxies. The model follows
the chemical, thermal and dynamical response of the disc to an external spiral
potential. Self-gravity and magnetic fields are not included. The calculations
demonstrate that gas can cool rapidly when subject to a spiral shock. Molecular
clouds in the spiral arms arise through a combination of compression of the ISM
by the spiral shock and orbit crowding. These results highlight that local
self-gravity is not required to form molecular clouds. Self-shielding provides
a sharp transition density, below which gas is essentially atomic, and above
which the molecular gas fraction is >0.001. The timescale for gas to move
between these regimes is very rapid (<~1 Myr). From this stage, the majority of
gas generally takes between 10 to 20 Myr to obtain high H fractions (>50
%). Although our calculations are unable to resolve turbulent motions on scales
smaller than the spiral arm and do not include self-gravity. True cloud
formation timescales are therefore expected to be even shorter.
The mass budget of the disc is dominated by cold gas residing in the spiral
arms. Between 50 and 75 % of this gas is in the atomic phase. When this gas
leaves the spiral arm and drops below the self-shielding limit it is heated by
the galactic radiation field. Consequently, most of the volume in the interarm
regions is filled with warm atomic gas. However, some cold spurs and clumps can
survive in interarm regions for periods comparable to the interarm passage
timescale. Altogether between 7 and 40% of the gas in our disc is molecular,
depending on the surface density of the calculation, with approximately 20%
molecular for a surface density comparable to the solar neighbourhood.Comment: 16 pages, 19 figures, accepted for publication in MNRA
Association between canine leishmaniosis and Ehrlichia canis co-infection: a prospective case-control study
Abstract Background In the Mediterranean basin, Leishmania infantum is a major cause of disease in dogs, which are frequently co-infected with other vector-borne pathogens (VBP). However, the associations between dogs with clinical leishmaniosis (ClinL) and VBP co-infections have not been studied. We assessed the risk of VBP infections in dogs with ClinL and healthy controls. Methods We conducted a prospective case-control study of dogs with ClinL (positive qPCR and ELISA antibody for L. infantum on peripheral blood) and clinically healthy, ideally breed-, sex- and age-matched, control dogs (negative qPCR and ELISA antibody for L. infantum on peripheral blood) from Paphos, Cyprus. We obtained demographic data and all dogs underwent PCR on EDTA-blood extracted DNA for haemoplasma species, Ehrlichia/Anaplasma spp., Babesia spp., and Hepatozoon spp., with DNA sequencing to identify infecting species. We used logistic regression analysis and structural equation modelling (SEM) to evaluate the risk of VBP infections between ClinL cases and controls. Results From the 50 enrolled dogs with ClinL, DNA was detected in 24 (48%) for Hepatozoon spp., 14 (28%) for Mycoplasma haemocanis, 6 (12%) for Ehrlichia canis and 2 (4%) for Anaplasma platys. In the 92 enrolled control dogs, DNA was detected in 41 (45%) for Hepatozoon spp., 18 (20%) for M. haemocanis, 1 (1%) for E. canis and 3 (3%) for A. platys. No Babesia spp. or “Candidatus Mycoplasma haematoparvum” DNA was detected in any dog. No statistical differences were found between the ClinL and controls regarding age, sex, breed, lifestyle and use of ectoparasitic prevention. A significant association between ClinL and E. canis infection (OR = 12.4, 95% CI: 1.5–106.0, P = 0.022) was found compared to controls by multivariate logistic regression. This association was confirmed using SEM, which further identified that younger dogs were more likely to be infected with each of Hepatozoon spp. and M. haemocanis, and dogs with Hepatozoon spp. were more likely to be co-infected with M. haemocanis. Conclusions Dogs with ClinL are at a higher risk of co-infection with E. canis than clinically healthy dogs. We recommend that dogs diagnosed with ClinL should be tested for E. canis co-infection using PCR
Simulations of the grand design galaxy M51: a case study for analysing tidally induced spiral structure
We present hydrodynamical models of the grand design spiral M51 (NGC 5194),
and its interaction with its companion NGC 5195. Despite the simplicity of our
models, our simulations capture the present day spiral structure of M51
remarkably well, and even reproduce details such as a kink along one spiral
arm, and spiral arm bifurcations. We investigate the offset between the stellar
and gaseous spiral arms, and find at most times (including the present day)
there is no offset between the stars and gas to within our error bars. We also
compare our simulations with recent observational analysis of M51. We compute
the pattern speed versus radius, and like the observations, find no single
global pattern speed. We also show that the spiral arms cannot be fitted well
by logarithmic spirals. We interpret these findings as evidence that M51 does
not exhibit a quasi-steady density wave, as would be predicted by density wave
theory. The internal structure of M51 derives from the complicated and
dynamical interaction with its companion, resulting in spiral arms showing
considerable structure in the form of short-lived kinks and bifurcations.
Rather than trying to model such galaxies in terms of global spiral modes with
fixed pattern speeds, it is more realistic to start from a picture in which the
spiral arms, while not being simple material arms, are the result of tidally
induced kinematic density `waves' or density patterns, which wind up slowly
over time.Comment: 23 pages, 20 figures, accepted for publication in MNRA
Built-in and induced polarization across LaAlO/SrTiO heterojunctions
Ionic crystals terminated at oppositely charged polar surfaces are inherently
unstable and expected to undergo surface reconstructions to maintain
electrostatic stability. Essentially, an electric field that arises between
oppositely charged atomic planes gives rise to a built-in potential that
diverges with thickness. In ultra thin film form however the polar crystals are
expected to remain stable without necessitating surface reconstructions, yet
the built-in potential has eluded observation. Here we present evidence of a
built-in potential across polar \lao ~thin films grown on \sto ~substrates, a
system well known for the electron gas that forms at the interface. By
performing electron tunneling measurements between the electron gas and a
metallic gate on \lao ~we measure a built-in electric field across \lao ~of 93
meV/\AA. Additionally, capacitance measurements reveal the presence of an
induced dipole moment near the interface in \sto, illuminating a unique
property of \sto ~substrates. We forsee use of the ionic built-in potential as
an additional tuning parameter in both existing and novel device architectures,
especially as atomic control of oxide interfaces gains widespread momentum.Comment: 6 pages, 4 figures. Submitted to Nature physics on May 1st, 201
Young people's uses of celebrity: Class, gender and 'improper' celebrity
This is an Author's Accepted Manuscript of an article published in Discourse: Studies in the Cultural
Politics of Education, 34(1), 2013, copyright Taylor & Francis, available online at:
http://www.tandfonline.com/10.1080/01596306.2012.698865.In this article, we explore the question of how celebrity operates in young people's everyday lives, thus contributing to the urgent need to address celebrity's social function. Drawing on data from three studies in England on young people's perspectives on their educational and work futures, we show how celebrity operates as a classed and gendered discursive device within young people's identity work. We illustrate how young people draw upon class and gender distinctions that circulate within celebrity discourses (proper/improper, deserving/undeserving, talented/talentless and respectable/tacky) as they construct their own identities in relation to notions of work, aspiration and achievement. We argue that these distinctions operate as part of neoliberal demands to produce oneself as a ‘subject of value’. However, some participants produced readings that show ambivalence and even resistance to these dominant discourses. Young people's responses to celebrity are shown to relate to their own class and gender position.The Arts and Humanities Research Council, the British Academy, the
Economic and Social Research Council, and the UK Resource Centre for
Women in Science Engineering and Technology
Composition, structure and stability of RuO_2(110) as a function of oxygen pressure
Using density-functional theory (DFT) we calculate the Gibbs free energy to
determine the lowest-energy structure of a RuO_2(110) surface in thermodynamic
equilibrium with an oxygen-rich environment. The traditionally assumed
stoichiometric termination is only found to be favorable at low oxygen chemical
potentials, i.e. low pressures and/or high temperatures. At realistic O
pressure, the surface is predicted to contain additional terminal O atoms.
Although this O excess defines a so-called polar surface, we show that the
prevalent ionic model, that dismisses such terminations on electrostatic
grounds, is of little validity for RuO_2(110). Together with analogous results
obtained previously at the (0001) surface of corundum-structured oxides, these
findings on (110) rutile indicate that the stability of non-stoichiometric
terminations is a more general phenomenon on transition metal oxide surfaces.Comment: 12 pages including 5 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
- …
