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Abstract 

Subretinal transplantation of functioning retinal pigment epithelial (RPE) cells may 

have the potential to preserve or restore vision in patients affected by blinding 

diseases such as age-related macular degeneration (AMD). One of the critical steps 

in achieving this is the ability to grow a functioning retinal pigment epithelium, which 

may need a substrate on which to grow and to aid transplantation. Tailoring the 

physical and chemical properties of the substrate should help the engineered tissue 

to function in the long term. The purpose of the study was to determine whether a 

functioning monolayer of RPE cells could be produced on expanded 

polytetrafluoroethylene substrates modified by either an ammonia plasma treatment 

or an n-Heptylamine coating, and whether the difference in surface chemistries 

altered the extracellular matrix the cells produced. Primary human RPE cells were 

able to form a functional, cobblestone monolayer on both substrates, but the 

formation of an extracellular matrix to exhibit a network structure took months, 

whereas on non-porous substrates with the same surface chemistry, a similar 

appearance was observed after a few weeks. This study suggests that the surface 

chemistry of these materials may not be the most critical factor in the development of 

growth of a functional monolayer of RPE cells as long as the cells can attach and 

proliferate on the surface. This has important implications in the design of strategies 

to optimise the clinical outcomes of subretinal transplant procedures. 

 

Keywords: surface modification; ophthalmology; age-related macular degeneration; 

plasma polymerisation 

  



 

3 
 

 

Graphical Abstract 

 

 

  



 

4 
 

Introduction 

The retinal pigment epithelium (RPE) is a monolayer of cells located between the 

underlying choriocapillaris and the overlying neurosensory retina and is critical for 

the survival and function of both these structures. Degenerative changes in the RPE 

monolayer and its underlying basement membrane (Bruch’s membrane) lead to Age-

related macular degeneration (AMD). AMD is the leading cause of blindness in 

subjects older than 50 years of age in the developed world. There are two types of 

AMD, neovascular (wet) and non-neovascular (dry). Despite substantial progress in 

the development of new therapies for wet AMD, the severe visual impairment 

associated with geographic atrophy in dry AMD remains untreatable [1, 2]. 

Replacement of the diseased RPE cells with healthy transplanted RPE cells is a 

feasible approach for a new AMD therapy [3, 4]. 

Transplantation of a suspension of cells has been demonstrated to be an unsuitable 

approach resulting in disappointing outcomes because aged human Bruch's 

membrane does not support attachment, survival and differentiation of transplanted 

RPE [5], causing serious complications such as proliferative vitreoretinopathy [6]. An 

approach to circumvent this problem is to transplant a RPE sheet intact from the 

outset on an underlying substrate that mimics Bruch’s membrane. A number of 

biostable synthetic membranes that satisfy the physical properties required of a 

suitable transplanting device are currently being advocated [4, 7]. The physical 

properties required include biostability, porosity and suitable mechanical strength for 

surgical handling. It is well known that the surface properties of the underlying 

substrate directly influences the cells ability to form a differentiated monolayer [8]. It 

is highly likely that the production of a stable basement membrane by RPE cells 

grown on a synthetic membrane will be crucial to the long-term behaviour of the 

transplanted construct.  Extracellular matrix (ECM) deposition by the RPE is likely to 

be affected by numerous parameters ranging from the surrounding biological 

environment to the underlying surface chemistry and topography the cells are 

exposed to. 

Expanded polytetrafluoroethylene (ePTFE) is a substrate that has many of the 

required physical properties of a transplanting device. It has a similar architecture to 

Bruch’s membrane, however, it cannot support cells without surface modification due 

to its hydrophobic surface chemistry. The use of plasma technologies presents the 
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opportunity to maintain the porous, fibrous structure of ePTFE while varying surface 

chemistry. Our previous work has investigated the deposition of thin polymer 

coatings via plasma polymerisation and direct modification of surface chemistry via 

ammonia plasma treatment. Both of these methods can be used to modify polymer 

substrates in a way that can support RPE growth and proliferation [9, 10]. Here we 

have investigated the effect of these surface modifications on a commercially-

available, ePTFE-based substrate. The aims of the study were to determine whether 

the functionality conferred by these two modification methods could support a 

differentiated monolayer of RPE cells, and whether the difference in surface 

chemistries resulted in any alteration in the functional behaviour of the cells and the 

ECM that they produce over time. We have demonstrated that, although the surface 

chemistry of the ePTFE resulting from these two processes is very different they 

both support a functional monolayer of primary human RPE cells and that the 

underlying basement membrane produced on both surfaces in the longer term is 

similar. 

Methods 

Substrates 

Substrates were 12 mm diameter Millicell® culture plate inserts (Millicell-CM, 

Millipore (UK) Ltd., Watford). These are ePTFE membranes subjected to a 

proprietary treatment by the manufacturer and were designated UT-ePTFE_M. Virgin 

ePTFE and PTFE sheets (Goodfellow Cambridge Ltd., Huntingdon, UK) were also 

used as control substrates in some studies. 

Ammonia plasma treatment 

Some UT-ePTFE_M, ePTFE and PTFE substrates were subsequently ammonia 

plasma treated with an in-house built helical resonator plasma system. This system 

and its operation have been described previously [11] and the operating conditions 

have been optimised to defluorinate the surface while causing minimal surface 

etching [12]. Immediately after plasma treatment, substrates were immersed in de-

ionised, uv-sterilised water for at least 12 hours to introduce polar groups to the 

surface [13]. These substrates were designated “NH3-ePTFE_M”, “NH3-ePTFE” or 

“NH3-PTFE”. Substrates were air-dried prior to further use. 
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n-Heptylamine coating 

Some UT-ePTFE_M and PTFE substrates were coated with n-Heptylamine (HA). 

The coating procedure was performed as described previously [14]. HA deposition 

was carried out for 40 seconds with power of 40 W. The pressure during deposition 

was 0.2 Torr. These substrates were designated “HA-ePTFE_M” or “HA-PTFE”. 

SEM 

Substrates were sputter coated with chromium using an Emitech K575x with a 

chromium target (125 mA for 4 minutes). These were then imaged using a LEO 1550 

field emission SEM (Zeiss, Welwyn Garden City, UK) using the secondary electron 

or in-lens detector, an accelerating voltage of 5 keV or 10keV and a working distance 

of approximately 8-10 mm. Manual measurements of fibre and node diameters were 

obtained by ImageJ [15].  

Atomic Force Microscopy 

Substrates were mounted on to 15 mm circular glass cover slips, then attached to 

metal specimen support discs using adhesive for positioning in the atomic force 

microscope (AFM). They were imaged with a Bruker Multimode AFM (NanoScope 

VIII, Bruker Nano Inc., Nano Surfaces Division, Santa Barbara, CA) using a 150 × 

150 × 5 μm scanner (J-scanner). All test were conducted with the Peakforce 

Quantitative Nanomechanical Mapping (PFQNM) method [16]. RTESPA-150 silicon 

probes (Bruker) with a nominal spring constant of 5 N/m and a tip radius of 8 nm 

were used. For the nanomechanical property testing, the deflection sensitivity, spring 

constant of the cantilever and the tip radius were calibrated. A photostress polymer 

with a known elastic modulus (PS1, Vishay Precision Group, Heilbronn, Germany) 

was used to calibrate the elastic modulus. At least five areas were scanned on each 

ePTFE substrate and a minimum of three technical replicate samples were tested. 

The size of each image was10 x 10 μm with a resolution of 384 pixels/line. The scan 

rate was 0.606 Hz. Data were analysed using Bruker Nanoscope Analysis software 

vs 1.5. 

Contact angle 

The contact angle measurement was conducted using the static sessile drop 

method. Contact angles were measured using a drop shape analysis system 

(DSA100, Krüss). 3l water droplets of degassed and deionised water were dropped 

onto the surface. Images of the droplet were recorded over 10 seconds at 25 frames 
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per second and the contact angle was determined from the first image in which the 

droplet was complete using the circle method. Contact angle measurements were 

performed on 3 areas on dry substrates. Substrates were tested in triplicate.  

XPS 

ePTFE substrates were analysed using a Scienta ESCA300. This employs a high 

power rotating anode and monochromatised Al K X-ray source (h = 1486.7eV), 

high transmission electron optics and a multichannel detector [17]. Samples were 

covered with a mask and oriented at 45° to the beam to reduce charging. Charge 

compensation, optimised for each sample, was also used. The x-ray source was 

operated at 14 kV, 100 mA (1.4 kW) for survey and region scans. Survey spectra 

were recorded at 150 eV pass energy and 1.9 mm slitwidth, whereas region spectra 

were recorded at 150 eV pass energy, 0.8 mm slitwidth.  

Primary cell culture 

Primary ocular tissue was collected under the host department’s ethical approval for 

the programme “Matricellular and related proteins in anomalous ocular repair and 

related processes; a program of study; LREC 01/066. Primary human RPE cells 

(hRPE) were isolated and expanded as described previously [9] and seeded onto 

substrates at 8.3x104 cells.cm-2. Control substrates were tissue culture plastic 

coverslip (Sarstedt Ltd., Leicester, UK). Cells were seeded in F10 medium (Sigma-

Aldrich Ltd., Dorset, UK) containing 2mM L-glutamine, 50U/ml penicillin G, 50g/ml 

streptomycin, 2.5ug/ml amphotericin B, and supplemented with 20% foetal bovine 

serum (FBS). At day 2, FBS was reduced to 5% and medium was supplemented 

with 5M all-trans retinoic acid (Sigma-Aldrich Ltd). Medium was changed thrice-

weekly. 

Immunocytochemistry  

Confirmation of the epithelial status of isolated RPE cells was demonstrated by 

staining cells using a pan-cytokeratin antibody (details of all antibodies and 

concentrations are found in Table 1).  Only these cells were used in further 

experiments. For investigation of cell morphology and cell-cell junctions, samples 

were fixed with 10% neutral-buffered formalin at days 7, 14, 21 and 28. For pan-

cytokeratin and ECM studies, samples were fixed in 100% ice-cold methanol. 

Samples were permeabilised with Triton X-100 if formalin-fixed. Samples were 

blocked in 10% normal goat serum for 30 minutes at 37°C then incubated overnight 
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at 4°C with the relevant antibody diluted in a 1% BSA: PBS solution. Samples were 

subsequently incubated with the appropriate secondary antibody for 60 minutes at 

37°C. Some formalin-fixed samples were counterstained with Alexa Fluor® 488 

phalloidin (Life Technologies, Paisley, UK). All samples were mounted with 

Vectashield® Mounting Medium with DAPI (Vector Laboratories UK Ltd., 

Peterborough, UK). Samples were visualised using laser scanning confocal 

microscopy and associated Image Explorer software (LSM 500; Carl Zeiss) 

Dextran transport assays 

Fluorescently-conjugated dextran solutions were made up in serum-free F10-HAM 

medium containing all other supplements. 10 kDa (D1976, Invitrogen), 70 kDa 

(FD70, Sigma-Aldrich) and 155 kDa (T1287, Sigma-Aldrich) dextrans were used to 

test a range of molecule sizes. Primary human RPE were seeded onto substrates as 

described above and grown for 28d. Medium was removed and cell culture inserts 

were moved to new 24-well plates. 400 L of dextran solution at a concentration of 

50 g/mL was added to the inner chambers of the inserts. 600 L serum-free 

medium was added to outer chambers. Plates were incubated at 37°C. At 4, 8, and 

24h, 50 L solution from outer chamber was removed and placed in 96-well black 

plates. 50 L fresh medium was added to outer chambers. Plates were read at the 

appropriate wavelength for the fluorescent conjugate. Data were corrected against a 

medium blank. Samples were tested in triplicate.  

Statistical Methods 

Statistical analyses of the data were conducted in SPSS v.21 (IBM Corp., Armonk, 

NY). For AFM data elastic modulus data, a one-way ANOVA, followed by Tukey’s 

HSD post-hoc test, was conducted. For contact angle studies, a one-way ANOVA, 

followed by Tamhane’s T2 post-hoc test. For dextran transport assays a one-way 

ANOVA followed by Dunnett’s T3 post-hoc test was conducted. 

Results 

SEM 

SEM micrographs demonstrated that substrates had a fibrous structure, with fibres 

being connected by nodes and with fibres being aligned in some regions (Figure 1a). 

Nodes measured between 1 and 2 m. Fibre diameter was in the range 100-300 nm. 

NH3-ePTFE_M (Figure 1b) and HA-ePTFE_M (Figure 1c) did not appear to have a 
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different structure, indicating that the two surface treatments had not caused surface 

etching or gross occlusion of the pores (representative image, HA-ePTFE_M, Figure 

1d).  

AFM 

AFM images showed that UT-ePTFE_M, NH3-ePTFE_M and HA-ePTFE_M all had a 

similar fibre and node structure (Figure 1 e-g), supporting the assertion that surface 

modification had not resulted in alteration of the macrostructure or pore occlusion. 

Both ammonia plasma treatment and HA-coating increased the mean elastic 

modulus compared with the untreated substrates (Figure 1h), although this 

difference was only statistically significant (p=0.033) for NH3-ePTFE_M.  

Contact Angle 

Non-porous untreated PTFE substrates had the highest water contact of 95.0 ±4.2°. 

Both ammonia plasma treatment and HA-coating reduced the contact angle (to 68.4 

± 5.4º, p≤0.001 and 83.0 ± 3.9º, p≤0.001), respectively, with the ammonia plasma 

treatment having the greatest effect. 

For porous substrates, untreated ePTFE had the highest water contact angle 

(133.1± 4.7º), with that of UT-ePTFE_M being significantly lower (75.8 ± 4.2º, 

p≤0.001). UT-ePTFE_M samples also allowed the water to penetrate the surface of 

the membrane. Ammonia plasma treatment of ePTFE_M (i.e. NH3-ePTFE_M) 

maintained this water penetration and lead to a significant reduction in contact angle 

(68.5 ± 4.0º, p=0.023), whereas heptylamine deposition lead to a significant increase 

in contact angle (123.5 ± 0.8º, p≤0.001). Untreated ePTFE and HA-ePTFE_M did not 

allow the water droplet to penetrate the surface. These surfaces also had contact 

angles significantly higher than their non-porous equivalents (p≤0.001 in both cases) 

whereas there was no significant difference between porous and non-porous 

ammonia treated surfaces (p=1.0).  

XPS 

The survey spectrum of UT-ePTFE_M (Figure 2a) demonstrated the presence of a 

relatively large (contributing to 23% of the elemental peaks) O1s peak in addition to 

the F1s and C1s peaks (52% and 25% respectively), confirming that the material had 

been subjected to a modification treatment by the manufacturer. Relative atomic 

concentrations for regions identified on survey spectra are shown in Table 2 and 
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those for the C1s region spectra in Table 3. The high resolution C1s spectrum 

(Figure 2b) gave additional information on this surface. In addition to the CF2 peak at 

292.0 eV (approximately 24% of surface species) and broad C1s envelope around 

285 eV, there was a distinct peak around 289 eV, contributing about 11% of surface 

species. The C1s envelope comprised two separate peaks at 285.0 eV (34 % of 

surface species) and 286.4 eV (30% of surface species). The second of these peaks 

is attributed to oxygenated hydrocarbon (C-O) species. 

The survey spectrum for NH3-ePTFE_M (Figure 2c) was similar to that of ePTFE_M 

in terms of peaks and their relative contributions, but with the addition of a small 

nitrogen peak (1.8%), which was expected [13]. The high resolution C1s spectrum 

(Figure 2d) also exhibited similar peaks to ePTFE_M, with the C-C contributing 

around 43.7% of surface species, peaks at 286.4 eV (attributed to various C-O and 

C-N moieties, 26%) and 287.8 eV (attributed to C=O, 0.6%) and the CF2 peak at 

292.0 eV (approximately 24% of surface species). The peak around 289 eV was 

again identified, contributing 9%. 

The HA-ePTFE_M survey spectrum (Figure 2e) was notably different to the UT-

ePTFE_M and NH3-ePTFE_M. The F1s region contributed only around 5% of 

surface species (compared with around 50% for the other surfaces), and the C1s 

region increased to around 72%.The contribution from N1s region increased to 

approximately 11% and the O1s region contribution decreased to approximately 

12%. In the C1s region scan (Figure 2f) the C-C/C-H peak, at 284.9 eV, contributed 

69.1%. Peaks attributed to amine, ether and other C-O and C-N moieties at 286.0 

eV, C=O at 287.6 eV and CF2 at 292.1 eV were exhibited, contributing 26.3%, 5.31% 

and 0.3% to surface species respectively. In contrast to the UT-ePTFE_M and NH3-

ePTFE_M C1s spectra, no peak at 289 eV was identified. 

Cell morphology 

At early time points, cells appeared to conform to the topography of the surface-

modified ePTFE_M substrates, exhibiting an elongated morphology (demonstrated 

by visualisation of F-actin), even when confluent and irrespective of the surface 

treatment, (Figure 3a, b). By 28d, however, cells adopted an epithelial, “cobblestone” 

morphology (Figure 3c, d) with some remaining stress fibres. Tight (Figure 3 e, f), 

occludins (Figure3 g, h) and adherens (Figure 3i, j) junctions were observed. There 
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appeared to be little qualitative difference between the two treated substrates in 

terms of cell morphology and cell-cell junction staining. 

ECM 

For all of the proteins studied, little or no positive staining was observed at time 

points before 28d. At 28d, limited protein deposition was detected for fibronectin, 

collagen I and collagen IV, and, where present, it had a globular or limited fibrillar 

appearance (Figure 4 a-f). No positive staining for laminin alpha 1 was observed at 

28d. Culture periods were extended for up to 84d. Some evidence of a fibronectin 

network was seen on both surfaces at 56d. A well-formed network over the surface 

was found at 84d (Figure 4g, k).  Similar behaviour was observed for collagen 1 (e.g. 

84d Figure 4h, l). A collagen IV network was observed on HA-ePTFE_M surfaces at 

56d but not on NH3-ePTFE_M, although it was at 84d on that surface (Figure 4m). 

Laminin still had a patchy, globular appearance at 56d, and a limited network 

formation even at 84d (Figure 4 j, n). 

In order to separate the effect on protein deposition of culture on porous surfaces 

from the effect of the surface modifications, cells were grown on PTFE (i.e. non-

porous) substrates (NH3-PTFE and HA-PTFE) subjected to the same surface 

treatments. In contrast to the behaviour observed on ePTFE_M, protein networks 

were observed much earlier. For fibronectin, small patches of fibrils were seen on 

HA-PTFE surfaces at 7d (Figure 5d), but on NH3-PTFE, a more fibrous network 

arrangement was seen (Figure 5a). By 28d, a network was observed on both 

surfaces (Figure 5g, k), although appeared to be more well-formed on NH3-PTFE. 

For collagen types I and IV, patches of fibrillar protein were observed at 7d on both 

surfaces (Figure 5 b, c, e, f) , with a more comprehensive network found at 28d 

(collagen 1 Figure 5h, l; collagen IV Figure 5i, m). Notably, a primitive laminin 

network was observed at particularly on HA-PTFE surfaces (Figure 5j, n), which is in 

contrast to that seen on the equivalent ePTFE_M substrate. 

Dextran transport assays 

All sizes of dextran could be transported through the substrates, whether or not cells 

were present. Less dextran passed through substrates when cells were present than 

through their acellular equivalent.  Statistical analysis confirmed this was the case for 

all sizes of dextran at 24h (Figure 6). At earlier time points the statistical significance 

of the results is less clear, but the trend suggests that the presence of cells reduces 
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dextran transport. No difference was found between the amounts of dextran passing 

through acellular substrates at any time point. Similarly, there was no difference in 

the dextran permeability between the two cellular substrates. These data indicate 

that the surface treatment had no effect on dextran transport, either in the presence 

or absence of cells. It appeared that, in every case, the amount of dextran that 

passed through the substrates increased with time, indicating that pores were not 

being occluded; this was not tested statistically due to the small sample size. 

Discussion 

Treating AMD by implantation of a functioning monolayer of RPE, or RPE-like cells, 

delivered on a carrier substrate, offers huge potential. In addition to resolving the 

issue of the best cell source for this application, understanding of the optimal 

substrate properties is required in order to support the cells pre- and post-

implantation. The most important requirements of the substrate are that they support 

the attachment and growth of a monolayer of functional RPE cells and continue to 

support the cells post implantation in the long term. It is well known that the surface 

wettability, chemistry and topography will influence the attachment of cells to a 

substrate. Once the cells have attached they will begin to secrete ECM molecules 

which will become incorporated in to the basement membrane between the substrate 

and the cells. We hypothesise that to achieve the long term stability and functioning 

of the transplanted cells that the basement membrane should mimic the Bruch’s 

membrane of the native retinal pigment epithelium. The question that arises is 

whether the surface properties of the substrate influence the composition of the 

basement membrane produced in the long term and thus the stability of the RPE 

monolayer. 

ePTFE has a similar architecture to Bruch’s membrane but cannot support cell 

attachment without surface modification [9]. The use of plasma technologies allows 

us to maintain the porous, fibrous structure of ePTFE while varying surface 

chemistry by plasma polymerisation or by direct modification of surface chemistry via 

ammonia plasma treatment. Qualitative examination of the surfaces using SEM and 

AFM suggested that neither the ammonia plasma treatment nor the addition of a 

heptylamine coating lead to changes in the surface topography of individual fibres or 

the porosity of the membrane. For the ammonia plasma treatment the conditions 

have previously been optimised and have been reported not to cause surface 
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etching of PTFE [18]. In contrast to a previous report [19], deposition of a plasma 

polymer coating did not occlude the pores. It was important to characterise the as-

received ePTFE membranes (UT-ePTFE_M). The measurement of a water contact 

angle was lower than that of untreated ePTFE and the ability of water to penetrate 

the surface and the presence of oxygen functionalities on the XPS indicated that this 

material had been subjected to a proprietary surface treatment and was not virgin 

ePTFE. The absence of nitrogen functionality suggests that this treatment was not 

ammonia or nitrogen gas plasma treatment [12]. O2 and Ar gas plasma treatment of 

PTFE is reported to result in the incorporation of oxygen functionalities without 

nitrogen functionalities [12, 20]; similar treatments may have been used to produce 

UT-ePTFE_M. Studies investigating the effect of the ammonia plasma treatment on 

PTFE have reported defluorination [11], evidenced by a large reduction in the F1s 

peak. In the current study, when ammonia plasma treatment was used on UT-

ePTFE_M to produce NH3-ePTFE_M, the extent to which defluorination was 

observed was not as great as those previous reports. This reflects the reduction of 

fluorine which had already been caused due to the proprietary treatment.   

For UT-ePTFE_M and NH3-ePTFE_M there was a distinct peak in the high resolution 

C1s spectra around 289 eV assigned to the C-F bond similar to a peak identified by 

Wilson et al. [13]. This is possibly due to the treatment breaking some, but not all, of 

the C-F bonds and the introduction of oxygen functionality or may be due to signal 

from the bulk. This peak was not identified on the HA-ePTFE_M and in conjunction 

with the large increase in C1s and N1s contributions, suggested that the HA coating 

masked the signal from the bulk ePTFE. Furthermore, analysis of the high resolution 

C1s region spectrum for HA-ePTFE_M indicated a larger aliphatic carbon (C-C/C-H) 

contribution, probably due to contributions from the alkyl chain in the surface coating. 

The peaks identified that are attributed to the HA coating are in agreement with 

those reported previously [21]. 

Contact angle analysis was used to give an indication of the effect of the different 

surface treatments on surface wettability. Contact angle experiments were 

conducted on non-porous substrates with the same surface treatments as their 

porous equivalents (with the exception of the proprietary treatment on the 

ePTFE_M), in order to determine the effect of surface chemistry on contact angle 

independently of the effects of the surface topography. Untreated virgin PTFE had 
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the highest contact angle of the non-porous substrates, with NH3 plasma treatment 

leading to a significant reduction, as reported previously [13]. HA_PTFE_M were 

more hydrophobic than NH3-PTFE samples correlating with the hydrocarbon content 

measured by XPS, but not to the same extent as untreated PTFE. The values 

obtained here are in the range reported previously for flat n-heptylamine surfaces 

[22]. As expected, porous ePTFE substrates gave different values to their non-

porous counterparts. The untreated ePTFE exhibited contact angles within the 

reported range [23, 24] and was more hydrophobic than the PTFE. Similarly, HA-

ePTFE_M had a higher contact angle that HA-PTFE.  These materials appear to 

behave according to the Cassie-Baxter model, with air being trapped in the pores, 

and the water droplet being pinned, resulting in a larger contact angle than that of 

the equivalent flat surface [25, 26]. This would also explain why the water droplet did 

not penetrate into the surface. NH3-PTFE and NH3-ePTFE_M surfaces had similar 

contact angles. This suggests that this material is not behaving according to either 

the Cassie-Baxter model or the Wenzel model [25, 27] where the liquid would enter 

the pores and the droplet spread across the surface, resulting in a lower contact 

angle than for an equivalent non-porous substrate. One possible explanation is that 

the surface treatments do not modify the fibres inside the porous substrates to the 

same extent, so once water has entered the pores, it may not continue to infiltrate at 

the same rate, although we did observe that the droplet penetrated into the surface. 

Interestingly, complete wetting of all ePTFE_M substrates was possible, as 

demonstrated by the dextran transport studies, where liquid was applied to the upper 

and lower surfaces and molecules were able to penetrate the membranes.  

Primary human RPE cells were able to form a confluent monolayer on both HA-

ePTFE_M  and NH3-ePTFE_M surfaces, despite their different surface wettabilities. 

This would suggest that the nitrogen and oxygen containing functional groups 

present in the HA-ePTFE_M surface were of sufficient concentration to promote cell 

attachment despite the overall hydrophobic nature of the surface. Cells on both 

surfaces adopted an epithelial phenotype, with the presence of cell-cell junctions and 

the ability to control the passage of dextran molecules through this monolayer 

demonstrating their functionality. Dextran molecules as large as 500 kDa can pass 

through Bruch’s membrane in vitro, although this decreases with age, particularly at 

the macula [28]. As expected, and as reported by others [29], the amount of dextran 
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passing through the RPE-ePTFE_M constructs decreased as molecular weight 

increased. There was no difference in the amount of dextran passing through when 

the substrates were acellular, indicating that the difference is mediated by the cells 

and not the substrate. RPE cells are reported to be the dominant contributor to the 

barrier to molecules passing through the RPE-choroid complex [30]; our study 

demonstrated similar results, with the time taken for dextran molecules to pass 

through the RPE-ePTFE_M constructs being much longer than for the acellular 

substrates. No differences were observed between the behaviour on the HA-

ePTFE_M  and NH3-ePTFE_M surfaces. These data support our previous, 

preliminary, findings where several different surface treatments were able to support 

RPE proliferation [10]. Similarly, Sorkio et al reported that a range of different ECM 

coatings on tissue culture plastic supported the formation of differentiated 

monolayers of embryonic stem cell-derived RPE [31]. This indicates that there may 

not be one optimal surface treatment, although other features such as epithelial 

maturity may be influenced by the surface chemistry [31]. Indeed, given that the 

community is still learning about the level of maturity required from implanted cells 

and the inherent heterogeneity of native RPE [32, 33], it may be difficult to identify a 

single ideal surface chemistry.  

Surface architecture also appears to be important, and, where surface chemistry is 

sufficient to support appropriate cell attachment and growth, may be dominant over 

the effect of the surface chemistry. Studies have suggested that surface topography 

influences many aspects of cellular behaviour, including that of RPE cells [34]. 

These questions are not only relevant for the development of substrates for 

subretinal transplantation, but also for in vitro models. Epithelial cells are frequently 

cultured on substrates described as “transwells”, or “tissue culture inserts”, without 

description, or even consideration, of the surface chemistry and architecture in such 

devices. In the study by Liu et al [35], the authors demonstrated that human foetal 

RPE were able to maintain characteristics of differentiated RPE better on two 200nm 

fibrous substrates of different chemistries than smooth surfaces made from the same 

polymer, and suboptimal growth on 1000 nm diameter fibres, indicating that surface 

chemistry is not always the dominant factor, and that a similar response can be 

obtained on surfaces with different surface chemistries. The fibres in this study were 

of the same order of magnitude. On the other hand, in our study, cell morphology 
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appeared to follow substrate topography when the cells were pre confluent, before 

adopting an epithelial, “cobblestone” morphology. This, coupled with the apparent 

absence of differences in cell behaviour on these surfaces, suggests that the 

influence of the surface architecture is not as significant once the cells have become 

confluent.  

Surface mechanical properties are another important, yet frequently-overlooked 

mediator of cellular response [36]. The in vitro behaviour of RPE has been reported 

to be influenced by substrate stiffness [37], with the data suggesting that increasing 

stiffness leads to undesirable cellular responses. Studies of the mechanical 

properties of Bruch’s membrane are limited in number, study different layers and use 

a range of techniques to obtain data, however the elastic modulus appears to be 

around 2-4 MPa [38]. The substrates used in this study were several orders of 

magnitude higher than that of Bruch’s membrane, although similar to those used in 

other studies [7, 35] and in the same order of magnitude as that reported for non-

porous PTFE [39]. Furthermore, the differences in surface stiffness resulting from the 

different surface treatments were relatively small, even across multiple regions on 

different samples. This may explain the similarity in cellular response that was 

observed. In future, it may be useful to develop substrates for RPE transplantation 

that have surface mechanical properties closer to those of Bruch’s membrane. 

The formation of a stable basement membrane by RPE cells grown on a synthetic 

membrane is likely to be crucial to the long-term behaviour of the transplanted 

construct; extracellular matrix performs a range of roles and forms part of the cellular 

microenvironment.  The apparent absence of ECM deposited on the surface of the 

porous substrates at early time points was a surprising finding. In contrast, ECM 

deposition on non-porous substrates with equivalent surface treatments appeared, 

qualitatively, to be similar to each other and even enhanced compared to that 

observed on control TCP substrates at these early time points. Even after several 

weeks in culture, ECM deposition on porous substrates was patchy and mostly 

disorganised in arrangement, compared to the networks observed on their non-

porous counterparts. Only after many weeks did the distribution of ECM components 

on the porous substrates appear to be similar to that reported by Sorkio et al [31] 

whereas on the non-porous substrates it was similar to that reported for growth on 

tissue culture plastic surfaces [40] from the early time points. The difference in cell 
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behaviour on the porous and non-porous substrates in terms of the time taken to 

deposit ECM seems to be mediated by the porosity rather than surface chemistry in 

our case. We were able to use porous and non-porous surfaces subjected to 

identical surface treatments, although the porous ePTFE_M had been subjected to 

some proprietary pre-treatment. The size and flexibility of the ePTFE substrates 

made it difficult to quantify the deposited proteins, as standard methods require 

significant scraping of the surfaces to ensure the ECM components are removed 

[41]. It may be that at the early time points the deposited ECM becomes distributed 

within the surface pores and thus it takes longer for a structured basement 

membrane to become apparent. It is clearly important that the substrate is porous to 

allow transport of nutrients and waste across the RPE layer in vivo, however, these 

data may suggest that a non-fibrous porous membrane might be advantageous in 

terms of providing a surface for deposition of a structural basement membrane at an 

earlier time point. On the other hand, we demonstrated that a stable functional 

monolayer of primary human RPE cells was present on the porous treated 

membranes long before the deposited ECM had become organised suggesting that 

the organisation is not necessary at the early stage but that the cells continue to 

remodel their basement membrane with time.  

 

Conclusion 

This study investigated two different surface modifications of an ePTFE-based 

substrate and found that they resulted in very different surface chemistry and 

wettability, while not appearing to modify macrostructure or topography. Both 

modifications supported the formation of a functioning monolayer of primary human 

RPE cells and the deposition of extracellular matrix components on each had a 

similar appearance. The time taken for the extracellular matrix to exhibit a network 

structure took months, whereas on non-porous substrates with the same surface 

chemistry, a similar appearance was observed after a few weeks. This study 

suggests that neither the specific surface chemistry, wettability or topography of 

these materials are critical to the growth of a functional monolayer of RPE cells as 

long as the cells can attach and proliferate on the surface initially. This conclusion 

fits with the literature which has demonstrated good in vitro growth of RPE and RPE-

like cells on substrates with a range of very different surface properties. This has 
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important implications on the design of strategies to optimise the clinical outcomes of 

subretinal transplant procedures. 
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Tables 

Table 1 – details and dilutions of antibodies used in this study. 

Antigen Antibody details; supplier Dilution 

Pan-CK, Clone C-11 Cat. # C9231; Sigma 1:200 

ZO-1 Cat. # 40-2200; Invitrogen 1:100 

Occludin Cat. # 71-1500; Invitrogen  1:100 

N-cadherin Cat. # ab18203; Abcam 

(Cambridge, UK) 

1:100 

Fibronectin Cat. # F0916; Sigma 1:100 

Collagen I Cat. # ab34710; Abcam 1:250 

Collagen IV  Cat. # C1926; Sigma 1:100 

Laminin-111 Cat. # L9393; Sigma 1:100 

Alexa Fluor® secondary 

antibodies  

Invitrogen; various  1:500 
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Table 2 – relative atomic concentration in regions identified from survey spectra. UT-

ePTFE_M exhibited a relatively large O1s peak, suggesting that this was not 

untreated ePTFE. NH3-ePTFE_M was similar, but with the addition of a small 

nitrogen peak. HA-ePTFE_M  had a large reduction in the F1s contribution, a 

moderation reduction in the O1s peak and increases in C1s and N1s regions.  

 

 Concentration (atomic %) 

 C1s N1s O1s F1s 

UT-ePTFE_M  25.36 - 23.11 51.53 

NH3-ePTFE_M  26.4 1.75 21.87 49.98 

HA-ePTFE_M  71.71 11.29 12.03 4.97 
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Table 3 – contributions to C1s region spectra. The relatively low CF2 contribution in 

UT-ePTFE_M indicated a prior surface treatment. The spectra for UT-ePTFE_M and 

NH3-ePTFE_M were similar. A distinct peak around 289 eV was assigned to the C-F 

bond may be a result of the surface treatments breaking some of the C-F bonds and 

the introduction of oxygen functionality or from the bulk. HA-ePTFE peak assignment 

suggested that the signal from the bulk had been masked. A larger aliphatic carbon 

(C-C/C-H) contribution is thought to be from the alkyl chain in the surface coating. 

 

 Contribution (%) 

Peak  284.89 286.4 287.6 288.99 292.11 

Assigned 
species C-C/C-H C-O/C-N C=O 289 CF2 

UT-ePTFE_M  34.14 30.6 - 11.24 24.02 

NH3-ePTFE_M  43.69 25.99 0.66 9.00 20.66 

HA_ePTFe_M 68.08 26.27 5.31 - 0.34 
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Figure captions 

Figure 1 – SEM micrographs of a) UT-ePTFE_M, b) NH3-ePTFE_M, and c), d) HA-

ePTFE_M show the node and fibre structure of the substrates. Surface treatment did 

not appear to have altered the macrostructure of the substrates. Atomic force 

microscopy images of e) UT-ePTFE_M, f) NH3-ePTFE_M, and g) HA-ePTFE_M 

show the node and fibre structure of the substrates. Surface treatment did not 

appear to have altered the macrostructure of the substrates. The mean elastic 

modulus (h) increased following surface modification, but was only statistically 

significant (p≤0.05) for NH3-ePTFE_M. Statistically significant differences are 

indicated by horizontal lines, error bars ± 1 standard deviation. 

Figure 2 – XPS survey and C1s region spectra for UT-ePTFE_M (a,b), NH3-

ePTFE_M (c, d), and HA-ePTFE_M (e-f). The relatively small contribution from CF2 

on the UT-ePTFE_M (b) indicates a prior surface treatment. Ammonia plasma 

treatment lead to the introduction of a small N1s peak (c). The n-heptylamine coating 

masked the underlying substrate properties, as demonstrated by the almost 

complete absence of fluorine signals (e and f)    

Figure 3 – Photomicrographs of hRPE grown on NH3-ePTFE_M (a, c, e, g, i), and 

HA-ePTFE_M (b, d, f, h, j). At 7 days (a, b), cells on both substrates adopted an 

elongated morphology (cells were stained for F-actin, green, and counterstained with 

DAPI, blue) and appeared to conform to the underlying substrate topography. On 

both substrates at 28 days a cobblestone morphology was observed (c, d) and the 

formation of tight (e, f), occludens (g, h) and cadherins junctions (i, j) was confirmed 

with florescent immunostaining for ZO-1, occludin and n-cadherin. Scale bars 

represent 50 m. 

Figure 4 – Photomicrographs of ECM expression on NH3-ePTFE_M (a-c, g-j) and 

HA-ePTFE_M (d-f, k-n). Samples were stained for fibronectin (a,d,g,k), collagen type 

I (b,e,h,l), collagen IV (c,f,I,m) and laminin-111 (j,n). A limited amount of ECM was 

observed at 28d (a-f), and the surface topography can be seen in several images 

(e.g. a, c). No positive laminin staining was observed. Following 84 days in culture, 

both substrates demonstrated a fibril expression of fibronectin (g,k), collagen type I 

(h,l), and basement membrane components collagen IV (i,m) and laminin-111 (j,n). 

Scale bars represent 50 m. 

Figure 5 – Photomicrographs of ECM expression on non-porous NH3-PTFE (a-c, g-j) 

and HA-PTFE (d-f, k-n). After 7 day culture of hRPE (a-f), primitive ECM networks 

were observed on both substrates. At 28d (g-n), denser ECM networks were 

detected, with limited laminin deposition at this time point. Scale bars represent 50 

m. 

Figure 6 – concentration of 10 kDa (a), 70 kDa (b) and 155 kDa (c) dextran passing 

through ePTFE_M substrates. Error bars ± 1 standard deviation. Statistically 

significant (p≤0.05) differences are indicated by horizontal lines. In all cases, the 
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amount of dextran that passed through the filters increased with time. There was no 

significant difference between the amount of dextran that passed through substrates 

with cells on them.   
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