126 research outputs found

    Temperature-induced viral resistance in Emiliania huxleyi (Prymnesiophyceae)

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e112134, doi:10.1371/journal.pone.0112134.Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi’s susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance.This study was supported by funding from the National Science Foundation (OCE-1061883 to KDB, BVM, and OCE-1061876 to GRD) and in part by grants from The Gordon and Betty Moore Foundation (to BVM and KDB)

    Dissolved Organic Matter in the Upwelling System off Peru: Imprints of Bacterial Activity and Water Mass Characteristics

    Get PDF
    Microbial degradation of dissolved organic matter (DOM) contributes to the formation and preservation of oxygen minimum zones (OMZs) in the ocean, but information on the spatial distribution and molecular composition of DOM in OMZ regions is scarce. We quantified molecular components of DOM that is, dissolved amino acids (DAA) and dissolved combined carbohydrates (DCCHO), in the upwelling region off Peru. We found the highest concentrations of DCCHO in fully oxygenated surface waters steeply declining at shallow depth. The highest DAA concentrations were observed close to the surface also, but attenuation of DAA concentration over depth was less pronounced. Compositional changes of DCCHO were strongest within more oxygenated waters. Compositional changes of DAA were also evident under suboxic conditions (<5 µmol O2 kg−1) and indicated bacterial peptide degradation. Moreover, specific free amino acids (alanine and threonine) were enhanced within suboxic waters, pointing to a potential production of dissolved organic nitrogen under suboxic conditions. Our results therewith suggest that deoxygenation supports a spatial decoupling of DCCHO and DAA production and degradation dynamics and give new insights to carbon and nitrogen cycling in the OMZ off Peru

    Excited States in 52Fe and the Origin of the Yrast Trap at I=12+

    Full text link
    Excited states in 52Fe have been determined up to spin 10\hbar in the reaction 28Si + 28Si at 115 MeV by using \gamma-ray spectroscopy methods at the GASP array. The excitation energy of the yrast 10+ state has been determined to be 7.381 MeV, almost 0.5 MeV above the well known \beta+-decaying yrast 12+ state, definitely confirming the nature of its isomeric character. The mean lifetimes of the states have been measured by using the Doppler Shift Attenuation method. The experimental data are compared with spherical shell model calculations in the full pf-shell.Comment: 9 pages, RevTeX, 7 figures include

    Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea

    Get PDF
    Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA), a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp.) collected from different sites of the Catalan coast (NW Mediterranean Sea). As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20–23). The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical cycles

    The Diabetes Pearl: Diabetes biobanking in The Netherlands

    Get PDF
    Contains fulltext : 109720.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: Type 2 diabetes is associated with considerable comorbidity and severe complications, which reduce quality of life of the patients and require high levels of healthcare. The Diabetes Pearl is a large cohort of patients diagnosed with type 2 diabetes, covering different geographical areas in the Netherlands. The aim of the study is to create a research infrastructure that will allow the study of risk factors, including biomarkers and genetic determinants for severe diabetes complications. METHODS/DESIGN: Baseline examinations began November 2009 and will continue through 2012. By the end of 2012, it is expected that 7000 patients with type 2 diabetes will be included in the Diabetes Pearl cohort. To ensure quality of the data collected, standard operation procedures were developed and used in all 8 recruitment centers. From all patients who provide informed consent, the following information is collected: personal information, medication use, physical examination (antropometry, blood pressure, electrocardiography (ECG), retina photographs, ankle-brachial index, peripheral vibration perception), self-report questionnaire (socio-economic status, lifestyle, (family) history of disease, and psychosocial well-being), laboratory measurements (glucose, A1c, lipid profile, kidney function), biobank material (storage of urine and blood samples and isolated DNA). All gathered clinical data and biobank information is uploaded to a database for storage on a national level. Biobanks are maintained locally at all recruitment centers. DISCUSSION: The Diabetes Pearl is large-scale cohort of type 2 diabetes patients in the Netherlands aiming to study risk factors, including biomarkers and genetic markers, for disease deterioration and the development of severe diabetes complications. As a result of the well-designed research design and the national coverage, the Diabetes Pearl data can be of great value to national and international researchers with an interest in diabetes related research

    Dietary polyunsaturated fat intake is associated with low-density lipoprotein size, but not with susceptibility to oxidation in subjects with impaired glucose metabolism and type II diabetes: the Hoorn study

    Get PDF
    OBJECTIVE: A high monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) intake is associated with lower plasma low-density lipoprotein (LDL)-cholesterol. However, PUFA may increase the susceptibility of LDL to undergo oxidative modifications. The aim of this study was to analyze the association of habitual dietary fat intake with LDL size and oxidizability. DESIGN: Cross-sectional. SETTING: Cohort study. SUBJECTS: Seven hundred and fifty-eight subjects with normal, impaired glucose metabolism and type II diabetes. INTERVENTIONS: Mean LDL size was measured by high-performance gel-filtration chromatography. In vitro oxidizability of LDL was determined by measuring lag time, reflecting the resistance of LDL to copper-induced oxidation. Information about dietary fat intake was obtained by a validated food frequency questionnaire. RESULTS: PUFA intake (energy percent) was significantly and negatively associated with LDL size in subjects with type II diabetes (standardized beta (95% confidence interval) -0.17 (-0.28;-0.06)) and impaired glucose metabolism - although not statistically significant - (-0.09 (-0.24;0.05)), but not in subjects with normal glucose metabolism (0.01 (-0.10;0.12)) (P-value for interaction=0.02). No significant associations were observed for total, saturated fat and MUFA intake with LDL size. Intake of fat was associated with lag time; however, the small magnitude of the associations suggested that the composition of dietary fat is not a major factor affecting lag time. The same association with lag time was observed in all three glucose metabolism categories. CONCLUSIONS: In individuals with abnormal glucose metabolism, higher PUFA intake is associated with smaller LDL particle size, but does not alter the susceptibility of LDL to in vitro oxidation. SPONSORSHIP: Dutch Diabetes Research Foundation, and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)

    Predicting glycated hemoglobin levels in the non-diabetic general population:Development and validation of the DIRECT-DETECT prediction model - a DIRECT study

    Get PDF
    AIMS/HYPOTHESIS: To develop a prediction model that can predict HbA1c levels after six years in the non-diabetic general population, including previously used readily available predictors. METHODS: Data from 5,762 initially non-diabetic subjects from three population-based cohorts (Hoorn Study, Inter99, KORA S4/F4) were combined to predict HbA1c levels at six year follow-up. Using backward selection, age, BMI, waist circumference, use of anti-hypertensive medication, current smoking and parental history of diabetes remained in sex-specific linear regression models. To minimize overfitting of coefficients, we performed internal validation using bootstrapping techniques. Explained variance, discrimination and calibration were assessed using R2, classification tables (comparing highest/lowest 50% HbA1c levels) and calibration graphs. The model was externally validated in 2,765 non-diabetic subjects of the population-based cohort METSIM. RESULTS: At baseline, mean HbA1c level was 5.6% (38 mmol/mol). After a mean follow-up of six years, mean HbA1c level was 5.7% (39 mmol/mol). Calibration graphs showed that predicted HbA1c levels were somewhat underestimated in the Inter99 cohort and overestimated in the Hoorn and KORA cohorts, indicating that the model's intercept should be adjusted for each cohort to improve predictions. Sensitivity and specificity (95% CI) were 55.7% (53.9, 57.5) and 56.9% (55.1, 58.7) respectively, for women, and 54.6% (52.7, 56.5) and 54.3% (52.4, 56.2) for men. External validation showed similar performance in the METSIM cohort. CONCLUSIONS/INTERPRETATION: In the non-diabetic population, our DIRECT-DETECT prediction model, including readily available predictors, has a relatively low explained variance and moderate discriminative performance, but can help to distinguish between future highest and lowest HbA1c levels. Absolute HbA1c values are cohort-dependent

    Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage

    Get PDF
    Bacteria in the 16S rRNA clade SAR86 are among the most abundant uncultivated constituents of microbial assemblages in the surface ocean for which little genomic information is currently available. Bioinformatic techniques were used to assemble two nearly complete genomes from marine metagenomes and single-cell sequencing provided two more partial genomes. Recruitment of metagenomic data shows that these SAR86 genomes substantially increase our knowledge of non-photosynthetic bacteria in the surface ocean. Phylogenomic analyses establish SAR86 as a basal and divergent lineage of γ-proteobacteria, and the individual genomes display a temperature-dependent distribution. Modestly sized at 1.25–1.7 Mbp, the SAR86 genomes lack several pathways for amino-acid and vitamin synthesis as well as sulfate reduction, trends commonly observed in other abundant marine microbes. SAR86 appears to be an aerobic chemoheterotroph with the potential for proteorhodopsin-based ATP generation, though the apparent lack of a retinal biosynthesis pathway may require it to scavenge exogenously-derived pigments to utilize proteorhodopsin. The genomes contain an expanded capacity for the degradation of lipids and carbohydrates acquired using a wealth of tonB-dependent outer membrane receptors. Like the abundant planktonic marine bacterial clade SAR11, SAR86 exhibits metabolic streamlining, but also a distinct carbon compound specialization, possibly avoiding competition

    Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean

    Get PDF
    As part of an ongoing survey of microbial community gene expression in the ocean, we sequenced and compared ~38 Mbp of community transcriptomes and ~157 Mbp of community genomes from four bacterioplankton samples, along a defined depth profile at Station ALOHA in North Pacific subtropical gyre (NPSG). Taxonomic analysis suggested that the samples were dominated by three taxa: Prochlorales, Consistiales and Cenarchaeales, which comprised 36–69% and 29–63% of the annotated sequences in the four DNA and four cDNA libraries, respectively. The relative abundance of these taxonomic groups was sometimes very different in the DNA and cDNA libraries, suggesting differential relative transcriptional activities per cell. For example, the 125 m sample genomic library was dominated by Pelagibacter (~36% of sequence reads), which contributed fewer sequences to the community transcriptome (~11%). Functional characterization of highly expressed genes suggested taxon-specific contributions to specific biogeochemical processes. Examples included Roseobacter relatives involved in aerobic anoxygenic phototrophy at 75 m, and an unexpected contribution of low abundance Crenarchaea to ammonia oxidation at 125 m. Read recruitment using reference microbial genomes indicated depth-specific partitioning of coexisting microbial populations, highlighted by a transcriptionally active high-light-like Prochlorococcus population in the bottom of the photic zone. Additionally, nutrient-uptake genes dominated Pelagibacter transcripts, with apparent enrichment for certain transporter types (for example, the C4-dicarboxylate transport system) over others (for example, phosphate transporters). In total, the data support the utility of coupled DNA and cDNA analyses for describing taxonomic and functional attributes of microbial communities in their natural habitats.Gordon and Betty Moore FoundationUnited States. Dept. of EnergyNational Science Foundation (U.S.) (Science and Technology Center Award EF0424599
    corecore