293 research outputs found

    A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments

    Get PDF
    The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS

    Integrated high-content quantification of intracellular ROS levels and mitochondrial morphofunction

    Get PDF
    Oxidative stress arises from an imbalance between the production of reactive oxygen species (ROS) and their removal by cellular antioxidant systems. Especially under pathological conditions, mitochondria constitute a relevant source of cellular ROS. These organelles harbor the electron transport chain, bringing electrons in close vicinity to molecular oxygen. Although a full understanding is still lacking, intracellular ROS generation and mitochondrial function are also linked to changes in mitochondrial morphology. To study the intricate relationships between the different factors that govern cellular redox balance in living cells, we have developed a high-contentmicroscopy-based strategy for simultaneous quantification of intracellular ROS levels and mitochondrial morphofunction. Here, we summarize the principles of intracellular ROS generation and removal, and we explain the major considerations for performing quantitative microscopy analyses of ROS and mitochondrial morphofunction in living cells. Next, we describe our workflow, and finally, we illustrate that a multiparametric readout enables the unambiguous classification of chemically perturbed cells as well as laminopathy patient cells

    Acute fatal presentation of ornithine transcarbamylase deficiency in a previously healthy male

    Get PDF
    Ornithine transcarbamylase (OTC) deficiency is an X-linked urea cycle defect. While hemizygous males typically present with hyperammonemic coma in infancy, reports of rare late-onset presentations exist, with poor outcomes in males up to 58 years old. Relatives with mutations identical to affected patients often remain asymptomatic, and it is likely that environmental and genetic factors influence disease penetrance and expression. Here, we present our investigation of a patient with late-onset presentation, and we emphasize the potential role of environmental and genetic factors on disease expression. The patient was a previously healthy 62-year-old man who developed mental slowing, refractory seizures, and coma over an 8-day period. Interestingly, the patient had recently used home gardening fertilizers and pesticides. Evaluations for drug and alcohol use, infections, and liver disease were negative. Despite aggressive therapy, blood NH3 concentration peaked at 2,050 μM and the patient died from cerebral edema and cerebellar herniation. Analysis of the OTC gene showed a Pro-225-Thr (P225T) change in exon 7, a mutation that has been previously implicated in OTC deficiency. This case illustrates that OTC deficiency can cause acute, severe hyperammonemia in a previously healthy adult and that the P225T mutation can be associated with late-onset OTC deficiency. We speculate that exposure to organic chemicals might have contributed to the onset of symptoms in this patient. This case also emphasizes that persistent hyperammonemia may cause irreversible neurologic damage and that after the diagnosis of hyperammonemia is established in an acutely ill patient, certain diagnostic tests should be performed to differentiate between urea cycle disorders and other causes of hyperammonemic encephalopathy

    Association between manganese superoxide dismutase promoter gene polymorphism and breast cancer survival

    Get PDF
    BACKGROUND: Manganese superoxide dismutase (MnSOD) plays a critical role in the detoxification of mitochondrial reactive oxygen species, constituting a major cellular defense mechanism against agents that induce oxidative stress. A genetic polymorphism in the mitochondrial targeting sequence of this gene has been associated with increased cancer risk and survival in breast cancer. This base pair transition (-9 T > C) leads to a valine to alanine amino acid change in the mitochondrial targeting sequence. A polymorphism has also been identified in the proximal region of the promoter (-102 C>T) that alters the recognition sequence of the AP-2 transcription factor, leading to a reduction in transcriptional activity. The aim of our study was to investigate possible associations of the -102 C>T polymorphism with overall and relapse-free breast cancer survival in a hospital-based case-only study. MATERIALS AND METHODS: The relationship between the MnSOD -102 C>T polymorphism and survival was examined in a cohort of 291 women who received chemotherapy and/or radiotherapy for incident breast cancer. The MnSOD -102 C>T genotype was determined using a TaqMan allele discrimination assay. Patient survival was evaluated according to the MnSOD genotype using Kaplan–Meier survival functions. Hazard ratios were calculated from adjusted Cox proportional hazards modeling. All statistical tests were two-sided. RESULTS: In an evaluation of all women, there was a borderline significant reduction in recurrence-free survival with either one or both variant alleles (CT + TT) when compared with patients with wild-type alleles (CC) (odds ratio, 0.65; 95% confidence interval, 0.42–1.01). When the analysis was restricted to patients receiving radiation therapy, there was a significant reduction in relapse-free survival in women who were heterozygous for the MnSOD -102 genotype (relative risk, 0.40; 95% confidence interval, 0.18–0.86). Similarly, when the homozygous and heterozygous variant genotypes were combined, there remained a significant reduction in relapse-free survival in this group (hazard ratio, 0.42; 95% confidence interval, 0.20–0.87). CONCLUSION: The MnSOD -102 variant allele appears to be associated with an improved recurrence-free survival in all patients, and more dramatically in subjects who received adjuvant radiation therapy

    Effect of bilirubin on cytochrome c oxidase activity of mitochondria from mouse brain and liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The unbound, free concentration (B<sub>f</sub>) of unconjugated bilirubin (UCB), and not the total UCB level, has been shown to correlate with bilirubin cytotoxicity, but the key molecular mechanisms accounting for the toxic effects of UCB are largely unknown.</p> <p>Findings</p> <p>Mouse liver mitochondria increase unbound UCB oxidation, consequently increasing the apparent rate constant for unbound UCB oxidation by HRP (Kp), higher than in control and mouse brain mitochondria, emphasizing the importance of determining Kp in complete systems containing the organelles being studied. The <it>in vitro </it>effects of UCB on cytochrome <it>c </it>oxidase activity in mitochondria isolated from mouse brain and liver were studied at B<sub>f </sub>ranging from 22 to 150 nM. The results show that UCB at B<sub>f </sub>up to 60 nM did not alter mitochondrial cytochrome <it>c </it>oxidase activity, while the higher concentrations significantly inhibited the enzyme activity by 20% in both liver and brain mitochondria.</p> <p>Conclusions</p> <p>We conclude that it is essential to include the organelles being studied in the medium used in measuring both Kp and B<sub>f</sub>. A moderately elevated, pathophysiologically-relevant B<sub>f </sub>impaired the cytochrome <it>c </it>oxidase activity modestly in mitochondria from mouse brain and liver.</p

    Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase

    Get PDF
    IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plus IR demonstrated reduced annexin/propidium iodide staining, caspase 3 activation, PARP [poly(ADP-ribose) polymerase] cleavage and mitochondrial membrane depolarization with increased clonogenic survival. IL-6 combined with IR or Dex increased early intracellular pro-oxidant levels that were causally related to activation of NF-κB (nuclear factor κB) as determined by the ability of N-acetylcysteine to suppress both pro-oxidant levels and NF-κB activation. In myeloma cells, upon combination with hydrogen peroxide treatment, relative to TNF (tumour necrosis factor)-α, IL-6 induced an early perturbation in reduced glutathione level and increased NF-κB-dependent MnSOD (manganese superoxide dismutase) expression. Furthermore, knockdown of MnSOD suppressed the IL-6-induced myeloma cell resistance to radiation. MitoSOX Red staining showed that IL-6 treatment attenuated late mitochondrial oxidant production in irradiated myeloma cells. The present study provides evidence that increases in MnSOD expression mediate IL-6-induced resistance to Dex and radiation in myeloma cells. The results of the present study indicate that inhibition of antioxidant pathways could enhance myeloma cell responses to radiotherapy and/or chemotherapy
    corecore