258 research outputs found

    Parsimonious finite-volume frequency-domain method for 2D P-SV-wave modeling

    Get PDF
    International audienceA new numerical technique for solving the 2D elastodynamic equations based on a finite volume approach is proposed. The associated discretization is through triangles. Only fluxes of required quantities are shared between cells, relaxing meshing conditions compared to finite element methods. The free surface is described along the edges of the triangles which may have different slopes. By applying a parsimonious strategy, stress components are eliminated from the discrete equations and only velocities are left as unknowns in triangles, minimizing the core memory requirement of the simulation. Efficient PML absorbing conditions have been designed for damping waves around the grid. Since the technique is devoted to full waveform inversion, we implemented the method in the frequency domain using a direct solver, an efficient strategy for multiple-source simulations. Standard dispersion analysis in infinite homogeneous media shows that numerical dispersion is similar to those of O(Âąx2) staggeredgrid finite-difference formulations when considering structured triangular meshes. The method is validated against analytical solutions of several canonical problems and with numerical solutions computed with a well-established finite-difference time-domain method in heterogeneous media. In presence of a free surface, the finite-volume method requires ten triangles per wavelength for a flat topography and fifteen triangles per wavelength for more complex shapes, well below criteria required by the staircase approximation of finite-difference methods. Comparison between the frequency-domain finite-volume and the O(Âąx2) rotated finite-difference methods also shows that the former is faster and less-memory demanding for a given accuracy level. We developed an efficient method for 2-D P-SV-wave modeling on structured triangular meshes as a tool for frequency-domain full-waveform inversion. Further work is required to assess the method on unstructured meshes

    1-D P-velocity Models of Mt. Vesuvius Volcano from the Inversion of TomoVes96 First Arrival Time Data

    Get PDF
    —We applied a revised version of the 1-D τ–p inversion method to first P-arrival times from the active seismic experiment performed at Mt. Vesuvius (southern Italy) in 1996 (TomoVes96 Project). The main objective of this work is to obtain 1-D velocity models of Mt. Somma-Vesuvius volcano complex and surrounding area. Moreover we show that combining the 1-D information we provide a reliable 2-D initial model for perturbative tomographic inversions. Seismic and geological surveys suggest the presence of a refractor associated with the contrast between carbonate basement and volcanic/alluvial sediments; synthetic simulations, using a realistic topography and carbonate top morphology, allowed us to study the effect of topography on the retrieved velocity models and to check that the 1-D τ–p method can also approximately retrieve the refractor depth and velocity contrast. We analysed data from 14 on-land shots recorded at stations deployed along the in-profile direction. We grouped the obtained models in three subsets according to the geology of the sampling area: Models for carbonate outcrop area, models for the Campanian Plain surrounding the volcano edifice and models for Mt. Somma-Vesuvius volcano complex. The found 1-D P-velocity models show important vertical and lateral variations. Very low velocities (1.5–2.5 km/s) are observed in the upper 200–500 m thick shallow layer. At greater depths (3 km is the maximum investigated depth) P velocities increase to values in the range of 4–6 km/s which are related to the presence of the carbonatic basement. Finally we interpolated the 1-D models to demonstrate an example of misfit for a 2-D interpolated model whose residuals are confined in a narrow band around zero

    A rock physics and seismic tomography study to characterize the structure of the Campi Flegrei caldera

    Get PDF
    The Campi Flegrei (CF) caldera experiences dramatic ground deformations unsurpassed anywhere in the world. The source responsible for this phenomenon is still debated. With the aim of exploring the structure of the caldera as well as the role of hydrothermal fluids on velocity changes, a multidisciplinary approach dealing with 3-D delay-time tomography and rock physics characterization has been followed. Selected seismic data were modeled by using a tomographic method based on an accurate finite-difference travel-time computation which simultaneously inverts P-wave and S-wave first-arrival times for both velocity model parameters and hypocenter locations. The retrieved P-wave and S-wave velocity images as well as the deduced Vp/Vs images were interpreted by using experimental measurements of rock physical properties on CF samples, to take into account steam/water phase transition mechanisms affecting P-wave and S-wave velocities. Also, modelling of petrophysical properties for site-relevant rocks constrains the role of overpressured fluids on velocity. A flat and low Vp/Vs anomaly lies at 4 km depth under the city of Pozzuoli. Earthquakes are located at the top of this anomaly. This anomaly implies the presence of fractured over-pressured gas-bearing formations and excludes the presence of melted rocks. At shallow depth, a high Vp/Vs anomaly located at 1 km suggests the presence of rocks containing fluids in the liquid phase. Finally, maps of the Vp*Vs product show a high Vp*Vs horse-shoe shaped anomaly located at 2 km depth. It is consistent with gravity data and well data and might constitute the on-land remainder of the caldera rim, detected below sea level by tomography using active source seismic data. For a more exhaustive description of the utilized methodologies, of synthetic tests for spatial resolution and uncertainty assessment and, the interpretation of results, the reader may refer to the paper Vanorio et al. (2005)

    Seismic waves synthesis by gaussian beams summation: A comparison with finite differences

    Get PDF
    ABSTRACT We apply Gaussian beam summation to the calculation of seismic reflections from complex interfaces, introducing several modifications of the original method. First, we use local geographical coordinates for the representation of paraxial rays in the vicinity of the recording surface, In this way we avoid the timeconsuming evaluation of the ray-centered coordinates of the observation points. Second, we propose a method for selecting the beams that ensures numerical stability of the synthetic seismograms, Third, we introduce a simple source wave packet that simplifies and stabilizes the calculations of inverse Fourier transforms. We compare reflection seismograms computed using the Gaussian beam-summation method with those calculated by finite differences. Two simple models are used. The first is a continuous curved interface separ

    Challenges in shallow target reconstruction by 3D elastic full-waveform inversion - Which initial model?

    Get PDF
    Elastic full-waveform inversion (FWI) is a powerful tool for high-resolution subsurface multiparameter characterization. However, 3D FWI applied to land data for near-surface applications is particularly challenging because the seismograms are dominated by highly energetic, dispersive, and complex-scattered surface waves (SWs). In these conditions, a successful deterministic FWI scheme requires an accurate initial model. Our study, primarily focused on field data analysis for 3D applications, aims at enhancing the resolution in the imaging of complex shallow targets, by integrating devoted SW analysis techniques with a 3D spectral-element-based elastic FWI. From dispersion curves, extracted from seismic data recorded over a sharp-interface shallow target, we build different initial S-wave (VS) and P-wave (VP) velocity models (laterally homogeneous and laterally variable), using a specific data transform. Starting from these models, we carry out 3D FWI tests on synthetic and field data, using a relatively straightforward inversion scheme. The field data processing before FWI consists of band-pass filtering and muting of noisy traces. During FWI, a weighting function is applied to the far-offset traces. We test 2D and 3D acquisition layouts, with different positions of the sources and variable offsets. The 3D FWI workflow enriches the overall content of the initial models, allowing a reliable reconstruction of the shallow target, especially when using laterally variable initial models. Moreover, a 3D acquisition layout guarantees a better reconstruction of the target's shape and lateral extension. In addition, the integration of model-oriented (preliminary monoparametric FWI) and data-oriented (time windowing) strategies into the main optimization scheme has produced further improvement of the FWI results

    2D seismic tomography of Somma-Vesuvius: Description of the experiment and preliminary results

    Get PDF
    A multidisciplinary project for the investigation of Mt. Vesuvius structure was started in 1993. The core of the project is represented by a high resolution seismic tomography study by using controlled and natural sources. The main research objective is to investigate the feeding system of the volcano and to retrieve details of the upper crustal structure in the area. A first 2D active seismic experiment was performed in May 1994, with the aim of studing the feasibility of using tomographic techniques for exploring the volcano interiors. Particularly, this experiment was designed to obtain information on the optimal sources-receivers configuration and on the depth extension of the volume sampled by shot-generated seismic waves. 66 three-component seismic stations and 16 single-component analogue instruments were installed by several Italian and French groups to record signals generated by three on-land, underground explosions. Sources and geophones were deployed along a 30-km NW-SE profile passing through the volcano crater. Receivers were placed at an average spacing of 250 m in the middle of the recording line and at 500 m outside. The arrival time data base was complemented by first P and S readings of microearthquakes which occurred in the recent past within the volcano. The first arrival data set was preliminarily used to determine the shallow structure of the volcano by applying Thurber's (1983) tomographic inversion technique. This analysis shows evidence for a high-velocity body which extends vertically from about 400 m below the crater down to at least 3000 m and for a shallow 300-500 m thick low-velocity cover which borders the edifice. Data from the distant shot show evidence for arrivals of deep reflected/converted phases and provide information on the deeper structure under the volcano. The results from the interpretation of 2D data are used for planning a 3D tomographic survey which will be carried out in 1996

    Campi Flegrei active seismic experiments waveforms compilation

    Get PDF
    A new experiment called SERAPIS (SEismic Reflection/Refraction Acquisition Project for Imaging complex volcanic Structures) has been planned and carried out, based on off-shore seismic energization and data acquisition on land and on sea-bottom. The experiment was performed in September, 2001 during which the vessel NADIR of IFREMER (equipped with 12, 16-liters airgun) produced more than 5000 air gun shots recorded at a sea-bottom seismograph array of 72 OBS and 62 stations installed on-land. Active seismic refraction DSS (Deep Seismic Soundings) acquired during the surveys conducted in 1980 and 1985 were recovered jointly with seismic data acquired in the Campi Flegrei area in the framework of the MareVes97 (an experiment devoted to the definition of the structure of the Somma-Vesuvio complex) offshore survey. The data set acquired during the SERAPIS experiment has been successfully used to infer 3D images of the volcanic structures of Campi Flegrei and Neapolitan bay. Active seismic waveforms and related P-picks (more than 90000 data) from the SERAPIS experiment are also available in the project data server

    A field expansions method for scattering by periodic multilayered media

    Get PDF
    The interaction of acoustic and electromagnetic waves with periodic structures plays an important role in a wide range of problems of scientific and technological interest. This contribution focuses upon the robust and high-order numerical simulation of a model for the interaction of pressure waves generated within the earth incident upon layers of sediment near the surface. Herein described is a boundary perturbation method for the numerical simulation of scattering returns from irregularly shaped periodic layered media. The method requires only the discretization of the layer interfaces (so that the number of unknowns is an order of magnitude smaller than finite difference and finite element simulations), while it avoids not only the need for specialized quadrature rules but also the dense linear systems characteristic of boundary integral/element methods. The approach is a generalization to multiple layers of Bruno and Reitich’s “Method of Field Expansions” for dielectric structures with two layers. By simply considering the entire structure simultaneously, rather than solving in individual layers separately, the full field can be recovered in time proportional to the number of interfaces. As with the original field expansions method, this approach is extremely efficient and spectrally accurate

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore