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The interaction of acoustic and electromagnetic waves with periodic structures plays an important

role in a wide range of problems of scientific and technological interest. This contribution focuses

upon the robust and high-order numerical simulation of a model for the interaction of pressure

waves generated within the earth incident upon layers of sediment near the surface. Herein

described is a boundary perturbation method for the numerical simulation of scattering returns from

irregularly shaped periodic layered media. The method requires only the discretization of the layer

interfaces (so that the number of unknowns is an order of magnitude smaller than finite difference

and finite element simulations), while it avoids not only the need for specialized quadrature rules

but also the dense linear systems characteristic of boundary integral/element methods. The

approach is a generalization to multiple layers of Bruno and Reitich’s “Method of Field

Expansions” for dielectric structures with two layers. By simply considering the entire structure

simultaneously, rather than solving in individual layers separately, the full field can be recovered in

time proportional to the number of interfaces. As with the original field expansions method, this

approach is extremely efficient and spectrally accurate. VC 2011 Acoustical Society of America.

[DOI: 10.1121/1.3531931]
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I. INTRODUCTION

The interaction of acoustic and electromagnetic waves

with periodic structures plays an important role in a wide

range of problems of scientific and technological interest.

From grating couplers1–3 to nanostructures4 to remote sens-

ing,5 the ability to simulate in a robust and accurate way the

fields generated by such structures is of crucial importance

to researchers from many disciplines. In this contribution,

we focus upon the robust and high-order numerical simula-

tion of a model for the interaction of pressure waves gener-

ated within the earth incident upon layers of sediment near

the surface. While we focus on the simplified model of linear

acoustic waves in a two-dimensional structure, the core of

the algorithm will remain the same for a fully three-dimen-

sional linear elastic simulation (though the implementation

details will be significantly more complicated).

This problem is motivated jointly by the recent increased
interest in oil exploration in mountainous regions, and the
rash of recent large earthquakes, which tend to occur in
regions with significant topography. Simulating the seismic
wavefield accurately in such regions is key for both imaging
(e.g., through waveform inversion, see Virieux and Operto6

for a recent review and Bleibinhaus and Rondenay7 for a spe-
cific discussion of topography in such algorithms) and hazard
assessment.8,9 A wide array of numerical algorithms have

been devised in the past 50 years for the simulation of pre-
cisely the problem we consider. The classical finite difference
method (FDM) (Refs. 10 and 11), finite element method
(FEM) (Refs. 12 and 13), and spectral element method (SEM)
(Refs. 14 and 15) are available but suffer from the fact that
they discretize the full volume of the model which not only
introduces a huge number of degrees of freedom but also
raises the difficult question of appropriately specifying a far-
field boundary condition explicitly. Furthermore, the FDM,
while simple to devise and implement, is not well-suited to
the complex geometries of the general layered media. A com-
pelling alternative is surface integral methods16,17 (e.g.,
boundary integral methods—BIMs—or boundary element
methods—BEMs) which only require a discretization of the
layer interfaces (rather than the whole structure) and which,
due to the choice of the Green’s function, enforce the far-field
boundary condition exactly. While these methods can deliver
high-accuracy simulations with greatly reduced operation
counts, there are several difficulties which need to be
addressed. First, high-order simulations can only be realized
with specially designed quadrature rules which respect the
singularities in the Green’s function (and its derivative, in cer-
tain formulations). Additionally, BIM/BEM typically gives
rise to dense linear systems to be solved which require care-
fully designed preconditioned iterative methods (with acceler-
ated matrix-vector products, e.g., by the fast-multipole
method18) for configurations of engineering interest.

In this work, we describe a boundary perturbation

method (BPM) for the numerical simulation of scattering

returns from irregularly shaped periodic layered media. We

focus upon periodic structures as they arise in a large number
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of engineering applications; however, this choice does sim-

plify our numerical approach (e.g., we may use the discrete

Fourier transform to approximate Fourier coefficients). We

note that this simplification is also realized for the other

methods listed above. Like BIM/BEM, the method requires

only the discretization of the layer interfaces (so that the

number of unknowns is an order of magnitude smaller than

FDM, FEM, and SEM simulations), while it avoids not only

the need for specialized quadrature rules but also the dense

linear systems characteristic of BIM/BEM. Our approach is

a generalization of the “Method of Field Expansions” (FE)

described by Bruno and Reitich19–22 for dielectric structures

with two layers (denoted there the “Method of Variation of

Boundaries”). This method is similar in spirit to the “Method

of Operator Expansions” (OE) of Milder,23,24 Milder and

Sharp,25,26 and Milder27,28 and the “Transformed Field Ex-

pansions” (TFE) approach of the Nicholls and Reitich,29–32

and these approaches could also be extended in the way we

describe here. We save this for future work, however, as

the (field expansion) FE approach is the simplest to imple-

ment. The FE method was generalized by Hesthaven and

collaborators to the case of grating couplers and layered

media,1–3 precisely the problem we consider here, though we

have found their method to be highly inefficient. As we dis-

cuss at the end of Sec. III B, their approach relies on the iter-

ative solution of the problem from one layer to the next with

the two-layer solver of Bruno and Reitich,20 applied sequen-

tially to each pair of layers. After a great number of itera-

tions, this method will eventually converge to the full

scattered field at enormous computational cost. We have

found that by simply considering the entire structure (more

specifically the full set of interfaces), the full field can be

recovered simultaneously in time proportional to the number

of interfaces. As with the FE method, as it was originally

designed by Bruno and Reitich, our new approach is spec-

trally accurate (i.e., it has convergence rates faster than any

polynomial order) due to both the analyticity of the scattered

fields with respect to the boundary perturbation and the opti-

mal choice of spatial basis functions which arise naturally

from the FE methodology.

The organization of the paper is as follows: In Sec. II,

we recall the governing equations of acoustic scattering in a

triply layered medium, and in Secs. II A and II B, we

describe our FE approach for such media with trivial (flat)

and non-trivial (perturbed) layering structure, respectively.

In Secs. III, III A, and III B, we repeat these considerations

for the general (Mþ 1)-layer case. In Sec. IV, we display

results of numerical simulations for three- and five-layer

structures to demonstrate the accuracy, efficiency, reliability,

and flexibility of our new numerical algorithm.

II. FIELD EXPANSIONS: THREE LAYERS

For ease of exposition, we begin by describing the case

of a triply layered material in two dimensions with non-

dimensional period d¼ 2p. In each of the layers, the

(reduced) scattered pressure satisfies the Helmholtz equation

with continuity conditions at the upper interface, illumina-

tion conditions at the lower interface, and outgoing wave

conditions (OWCs) at positive and negative infinity. More

precisely, we define the domains

Su ¼ fðx; yÞ j y > �gþ gðxÞg;
Sv ¼ fðx; yÞ j �hþ hðxÞ < y < �gþ gðxÞg;
Sw ¼ fðx; yÞ j y < �hþ hðxÞg;

with (upward pointing) normals

Ng ¼ ð�@xg; 1ÞT ; Nh ¼ ð�@xh; 1ÞT

and mid-levels y ¼ �g; y ¼ �h; see Fig. 1. In each of these

domains is a constant-density acoustic medium with velocity

cj (j¼ u, v, w); we assume that plane-wave radiation is inci-

dent upon the structure from below:

~wðx; y; tÞ ¼ e�ixteiðaxþbyÞ ¼ e�ixtwiðx; yÞ: (1)

With these specifications, we can define in each layer the pa-

rameter kj¼x/cj which characterizes both the properties of

the material and the frequency of radiation in the structure.

If the reduced scattered fields (i.e., the full scattered fields

with the periodic time dependence factored out) in Su, Sm, and

Sw are, respectively, denoted as fu, v, wg¼fu(x, y), v(x, y),

w(x, y)g, then these functions will be quasiperiodic33

uðxþ d; yÞ ¼ eiaduðx; yÞ; vðxþ d; yÞ ¼ eiadvðx; yÞ;
wðxþ d; yÞ ¼ eiadwðx; yÞ;

and the system of partial differential equations to be solved

is

Duþ k2
uu ¼ 0; y > �gþ gðxÞ; (2a)

Bfug ¼ 0; y!1; (2b)

FIG. 1. Problem configuration with layer boundaries in solid lines and mid-

levels in dashed lines. Here �g ¼ 2, �h ¼ �2, g(x)¼ 0.2 cos(x), h(x)¼ 0.2

cos(2x), and �m ¼ 0.
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Dvþ k2
v v ¼ 0; �hþ hðxÞ < y < �gþ gðxÞ; (2c)

u� v ¼ 0; @Ng
ðu� vÞ ¼ 0; y ¼ �gþ gðxÞ; (2d)

Dwþ k2
ww ¼ 0; y < �hþ hðxÞ; (2e)

Bfwg ¼ 0; y! �1; (2f)

v� w ¼ n; @Nh
ðv� wÞ ¼ w; y ¼ �hþ hðxÞ; (2g)

where

nðxÞ ¼ �wiðx; �hþ hðxÞÞ;
wðxÞ ¼ �½@Nh

wiðx; yÞ�y¼�hþhðxÞ: (2h)

In these equations, the operator B enforces the condition that

scattered solutions must either be “outgoing” (upward in Su

and downward in Sw) if they are propagating or “decaying”

if they are evanescent. We make this “Outgoing Wave Con-

dition” (Ref. 33) more precise in the Fourier series expres-

sion for the exact solution, see Eq. (3) below.

The quasiperiodic solutions of the Helmholtz equa-

tions—(2a), (2c), and (2e)—and the OWCs—(2b) and (2f)—

are given by33

uðx; yÞ ¼
X1

p¼�1
ap expðiðapxþ bu;pðy� �gÞÞÞ; (3a)

vðx; yÞ ¼
X1

p¼�1
bp expðiðapx� bv;pðy� �mÞÞÞ

þ
X1

p¼�1
cp expðiðapxþ bv;pðy� �mÞÞÞ; (3b)

wðx; yÞ ¼
X1

p¼�1
dp expðiðapx� bw;pðy� �hÞÞÞ; (3c)

where �m ¼ ð�gþ �hÞ=2, and the OWC mandates that we

choose the positive sign in front of bu,p in Eq. (3a) and the

negative sign in front of bw,p in Eq. (3c). These formulas are

valid provided that (x, y) are outside the grooves, i.e.,

ðx; yÞ 2 fy > �gþ jgjL1g [ f�hþ jhjL1 < y < �g� jgjL1g
[ fy < �h� jhjL1g:

In these equations

ap ¼ aþ ð2p=dÞp; bj;p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

j � a2
p

q
a2

p < k2
j

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

p � k2
j

q
a2

p > k2
j ;

8><
>:

(4)

j¼ u, v, w, and d is the period of the structure. Again, the

OWC determines the choice of sign for bj,p in the evanescent

case a2
p > k2

j . The boundary conditions—(2d) and (2g)—

determine the coefficients fap, bp, cp, dpg.

A. Trivial interfaces

In the case, where the interfaces are flat (i.e., g¼ h: 0)

then the equations for ~zp ¼ ðap; bp; cp; dpÞT become quite

straightforward. Equations (3), (2d), and (2g) mandate that

0 ¼
X1

p¼�1
expðiapxÞfap � bp expð�ibv;pð�g� �mÞÞ

� cp expðibv;pð�g� �mÞÞg; (5a)

0 ¼
X1

p¼�1
expðiapxÞfðibu;pÞap � ð�ibv;pÞbp

� expð�ibv;pð�g� �mÞÞ � ðibv;pÞcp

� expðibv;pð�g� �mÞÞg; (5b)

nðxÞ ¼
X1

p¼�1
expðiapxÞfbp expð�ibv;pð�h� �mÞÞ

þ cp expðibv;pð�h� �mÞÞ � dpg; (5c)

wðxÞ ¼
X1

p¼�1
expðiapxÞfð�ibv;pÞbp

� expð�ibv;pð�h� �mÞÞ þ ðibv;pÞcp

� expðibv;pð�h� �mÞÞ � ð�ibw;pÞdpg: (5d)

Upon expansion of n(x) and w(x) in Fourier series

nðxÞ ¼
X1

p¼�1
n̂p expðiapxÞ; wðxÞ ¼

X1
p¼�1

ŵp expðiapxÞ;

we can write Eq. (5) “wavenumber-by-wavenumber” as

Ap~zp ¼~rp (6)

where

Ap ¼

1 � expð�ibv;pð�g� �mÞÞ � expðibv;pð�g� �mÞÞ 0

ðibu;pÞ ðibv;pÞ expð�ibv;pð�g� �mÞÞ �ðibv;pÞ expðibv;pð�g� �mÞÞ 0

0 expð�ibv;pð�h� �mÞÞ expðibv;pð�h� �mÞÞ �1

0 �ðibv;pÞ expð�ibv;pð�h� �mÞÞ ðibv;pÞ expðibv;pð�h� �mÞÞ ðibw;pÞ

0
BBB@

1
CCCA

and

~rp ¼ ð0; 0; n̂p; ŵpÞ
T :

While not exactly the same, this algorithm (with trivial inter-

faces) is very much in the spirit of the “Reflectivity

Method.”34
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B. Non-trivial interfaces

To deal with non-trivial interfaces, we once again

appeal to the representations (3) which satisfy the Helmholtz

equations and OWCs. As before, the boundary conditions

(2d) and (2g) determine the coefficients ~zp ¼ ðap; bp; cp;
dpÞT , however, these conditions must be understood as g-

and h-dependent equations.

The FE method (Ref. 20) as applied to Eq. (5) sup-

poses that if the interfaces are small perturbations of the

flat interface case, g(x)¼ ef(x) and h(x)¼ es(x), then the

fields fu, v, wg¼fu(x, y; e), v(x, y; e), w(x, y; e)g will depend

analytically upon e, allowing the Taylor expansion about

e¼ 0

uðx; y; eÞ ¼
X1

p¼�1
apðeÞ expðiðapxþ bu;pðy� �gÞÞÞ

¼
X1

p¼�1

X1
n¼0

ap;ne
n expðiðapxþ bu;pðy� �gÞÞÞ;

vðx; y; eÞ ¼
X1

p¼�1
bpðeÞ expðiðapx� bv;pðy� �mÞÞÞ

þ
X1

p¼�1
cpðeÞ expðiðapxþ bv;pðy� �mÞÞÞ

¼
X1

p¼�1

X1
n¼0

bp;ne
n expðiðapx� bv;pðy� �mÞÞÞ

þ
X1

p¼�1

X1
n¼0

cp;ne
n expðiðapxþ bv;pðy� �mÞÞ;

wðx; y; eÞ ¼
X1

p¼�1
dpðeÞ expðiðapx� bw;pðy� �hÞÞÞ

¼
X1

p¼�1

X1
n¼0

dp;ne
n expðiðapx� bw;pðy� �hÞÞÞ:

In light of the non-dimensionalization of the period of the

interfaces (d¼ 2p), the parameter e is also non-dimensional

and measures the “height-to-period” ratio of the profiles.

A careful mathematical analysis of this method in the

two-layer case requires analyticity of the interface19,31 and

we fully anticipate that a similar result can be realized for

the (Mþ 1)-layer case (this is the subject of current in-

vestigation by the authors). However, closely related

“transformed” fields can be shown to be analytic in e pro-

vided that the interface is only Lipschitz (continuous but not

necessarily continuously differentiable). It has been our ex-

perience that, in practice, profiles as irregular as these can be

simulated with excellent results.20,31

To determine the ~zp;n ¼ ðap;n; bp;n; cp;n; dp;nÞT , we con-

sider the generalization of Eq. (5)

0 ¼
X1

p¼�1
expðiapxÞfapðeÞ expðibu;pef Þ

� bpðeÞ expð�ibv;pð�gþ ef � �mÞÞ
� cpðeÞ expðibv;pð�gþ ef � �mÞÞg; (7a)

0 ¼
X1

p¼�1
expðiapxÞfðibu;p � iapeð@x f ÞÞapðeÞ

� expðibu;pef Þ � ð�ibv;p � iapeð@x f ÞÞbpðeÞ
� expð�ibv;pð�gþ ef � �mÞÞ � ðibv;p � iapeð@x f ÞÞ
� cpðeÞ expðibv;pð�gþ ef � �mÞÞg (7b)

and

nðxÞ ¼
X1

p¼�1
expðiapxÞfbpðeÞ expð�ibv;pð�hþ es� �mÞÞ

þ cpðeÞ expðibv;pð�hþ es� �mÞÞ
� expð�ibw;pesÞdpðeÞg; (7c)

wðxÞ ¼
X1

p¼�1
expðiapxÞfð�ibv;p � iapeð@xsÞÞbpðeÞ

� expð�ibv;pð�hþ es� �mÞÞ þ ðibv;p � iapeð@xsÞÞ
� cpðeÞ expðibv;pð�hþ es� �mÞÞ
� ð�ibw;p � iapeð@xsÞÞ expð�ibw;pesÞdpðeÞg:

(7d)

Expanding in Taylor series gives (somewhat complicated)

equations for the ~zp;n. To give a flavor for this, let us focus

upon Eq. (7a)

0 ¼
X1

p¼�1
expðiapxÞ

X1
n¼0

ap;ne
n

 ! X1
l¼0

ðibu;pÞl
ðf ðxÞÞl

l!
el

 !(

�
X1
n¼0

bp;ne
n

 ! X1
l¼0

ð�ibv;pÞl
ðf ðxÞÞl

l!
el

 !

� expð�ibv;pð�g� �mÞÞ �
X1
n¼0

cp;ne
n

 !

�
X1
l¼0

ðibv;pÞl
ðf ðxÞÞl

l!
el

 !
expðibv;pð�g� �mÞÞ

)

¼
X1
n¼0

en
X1

p¼�1
expðiapxÞ

Xn

l¼0

ap;n�lðibu;pÞl
ðf ðxÞÞl

l!

(

�
Xn

l¼0

bp;n�lð�ibv;pÞl
ðf ðxÞÞl

l!
expð�ibv;pð�g� �mÞÞ

�
Xn

l¼0

cp;n�lðibv;pÞl
ðf ðxÞÞl

l!
expðibv;pð�g� �mÞÞ

)
; (8)

Setting Fl(x)¼ ( f(x))l/l! and denoting its Fourier coefficients

by Fq,l, i.e.,

FlðxÞ ¼
X1

q¼�1
Fq;le

ið2p=dÞqx ¼
X1

q¼�1
Fq;le

iqx;
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we can further simplify Eq. (8)

0 ¼
X1
n¼0

en
Xn

l¼0

X1
p¼�1

expðiapxÞap;n�lðibu;pÞl
(

�
X1

p¼�1
expðiapxÞbp;n�lð�ibv;pÞl expð�ibv;pð�g� �mÞÞ

�
X1

p¼�1
expðiapxÞcp;n�lðibv;pÞl expðibv;pð�g� �mÞÞ

)

�
X1

q¼�1
Fq;le

iqx

 !
;

so that

0 ¼
X1
n¼0

en
Xn

l¼0

X1
p¼�1

expðiapxÞ
X1

q¼�1
fap�q;n�lðibu;p�qÞl

� bp�q;n�lð�ibv;p�qÞl expð�ibv;p�qð�g� �mÞÞ
� cp�q;n�lðibv;p�qÞl expðibv;p�qð�g� �mÞÞgFq;l: (9)

At order n¼ 0 and wavenumber p, Eq. (9) amounts to

0 ¼ ap;0 � bp;0 expð�ibv;pð�g� �mÞÞ
� cp;0 expðibv;pð�g� �mÞÞ

since Fq,0¼ 1 only if q¼ 0; this is simply the first equation

in Eq. (6). For orders n> 0, we find that Eq. (9) implies

ap;n � bp;n expð�ibv;pð�g� �mÞÞ
� cp;n expðibv;pð�g� �mÞÞ ¼ qp;n;

where qp,n are the Fourier coefficients of the function

qnðxÞ ¼
Xn

l¼1

X1
p¼�1

expðiapxÞ
X1

q¼�1
f�ap�q;n�lðibu;p�qÞl

þ bp�q;n�lð�ibv;p�qÞl expð�ibv;p�qð�g� �mÞÞ
þ cp�q;n�lðibv;p�qÞl expðibv;p�qð�g� �mÞÞgFq;l:

This can be repeated for the other equations in Eq. (7).

At order n¼ 0, this delivers exactly Eq. (6), the equations in

the flat interface configuration. For order n> 0, the develop-

ments are a little more involved but they result in

Ap~zp;n ¼ ~Rp;n, where ~Rp;n is the Fourier coefficients of the

right hand side ~Rn. In more detail, ~Rð1Þn ¼ qp;n,

~Rð2Þn ¼
X1

p¼�1
expðiapxÞ

Xn

l¼1

X1
q¼�1

�½Fq;lðibu;p�qÞ2

� ð@xf ÞFq;l�1ðiap�qÞ�ðibu;p�qÞl�1ap�q;n�l

þ½Fq;lð�ibv;p�qÞ2�ð@xf ÞFq;l�1ðiap�qÞ�ð�ibv;p�qÞl�1

� expð�ibv;p�qð�g� �mÞÞbp�q;n�l

þ ½Fq;lðibv;p�qÞ2 � ð@xf ÞFq;l�1ðiap�qÞ�ðibv;p�qÞl�1

� expðibv;p�qð�g� �mÞÞcp�q;n�l;

and

~Rð3Þn ¼
X1

p¼�1
expðiapxÞ

Xn

l¼1

X1
q¼�1

�bp�q;n�lð�ibv;p�qÞl

� Sq;l expð�ibv;p�qð�g� �mÞÞ�cp�q;n�lðibv;p�qÞlSq;l

� expðibv;p�qð�g� �mÞÞ þ dp�q;n�lð�ibw;p�qÞlSq;l;

and

~Rð4Þn ¼
X1

p¼�1
expðiapxÞ

Xn

l¼1

X1
q¼�1

� ½Sq;lð�ibv;p�qÞ2�ð@xsÞSq;l�1ðiap�qÞ� ð�ibv;p�qÞl�1

� expð�ibv;p�qð�g� �mÞÞbp�q;n�l � ½Sq;lðibv;p�qÞ2

� ð@xsÞSq;l�1ðiap�qÞ�ðibv;p�qÞl�1

� expðibv;p�qð�g� �mÞÞcp�q;n�l þ ½Sq;lð�ibw;p�qÞ2

� ð@xsÞSq;l�1ðiap�qÞ�ð�ibw;p�qÞl�1Sq;l; dp�q;n�l

where a negative Taylor index n in any of fap,n, bp,n, cp,n,
dp,ng is understood to be zero. In these equations, we define

Sl,q as the Fourier coefficients of Sl(x)¼ (s(x))l/l!, i.e.,

SlðxÞ ¼
X1

q¼�1
Sq;le

ið2p=dÞqx ¼
X1

q¼�1
Sq;le

iqx:

III. FIELD EXPANSIONS: (M 1 1) LAYERS

In the general (Mþ 1)-layer case (M> 1), we consider

interfaces specified at y¼ a(m)þ g(m)(x) for 1�m�M.

Defining the domains

Sð0Þ ¼ fðx; yÞ j y> að1Þ þ gð1ÞðxÞg;
SðmÞ ¼ fðx; yÞ j aðmþ1Þ þ gðmþ1ÞðxÞ< y< aðmÞ þ gðmÞðxÞg;

1� m�M� 1;

SðMÞ ¼ fðx; yÞ j y< aðMÞ þ gðMÞðxÞg;

with normals N(m)¼ (� @xg
(m), 1)T, the scattered field m satis-

fies the system of Helmholtz equations [cf. Eqs. (2a), (2c),

and (2e)]

DvðmÞ þ ðkðmÞÞ2vðmÞ ¼ 0 in SðmÞ; 0 � m � M;

where m(m) is m restricted to S(m). For incident radiation of the

form (1), one has k(m)¼x/cm. These must be supplemented

with the general boundary conditions

½vðm�1Þ � vðmÞ�y¼aðmÞþgðmÞ ¼ nðmÞ; 1 � m � M; (10a)

½@NðmÞv
ðm�1Þ � @NðmÞv

ðmÞ�y¼aðmÞþgðmÞ ¼ wðmÞ;

1 � m � M; (10b)

cf. (2d) and (2g), where n(m): 0, w(m): 0 for m=M, for a

plane-wave incident from below; we briefly discuss other
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incident fields in Sec. IV B. Again, the solutions of these

Helmholtz problems outside the grooves are

vðmÞðx; yÞ ¼
X1

p¼�1
dðmÞp expðiðapx� bðmÞp ðy� �aðmÞÞÞÞ

þ
X1

p¼�1
uðmÞp expðiðapxþ bðmÞp ðy� �aðmÞÞÞÞ;

(11)

where the �aðmÞ are the mid-levels of each layer

�að0Þ ¼ að1Þ; �aðmÞ ¼ 1

2
ðaðmÞ þ aðmþ1ÞÞ; �aðMÞ ¼ aðMÞ;

and

bðmÞp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkðmÞÞ2 � a2

p

q
a2

p < ðkðmÞÞ
2

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

p � ðkðmÞÞ
2

q
a2

p > ðkðmÞÞ
2:

8<
:

The OWC can be enforced by choosing d
ð0Þ
p ¼ u

ðMÞ
p � 0. To

determine the other coefficients, we appeal to the boundary

conditions at the interfaces y¼ a(m)þ g(m) (x), Eq. (10).

A. Trivial interfaces

For the case of flat (trivial) interfaces, i.e., g(m): 0 for

1�m�M, the Dirichlet condition (10a) coupled to the rep-

resentation (11) states that

nðmÞðxÞ ¼
X1

p¼�1
fdðm�1Þ

p expð�ibðm�1Þ
p ðaðmÞ � �aðm�1ÞÞÞ

þ uðm�1Þ
p expðibðm�1Þ

p ðaðmÞ � �aðm�1ÞÞÞ
� dðmÞp expð�ibðmÞp ðaðmÞ � �aðmÞÞÞ
� uðmÞp expðibðmÞp ðaðmÞ � �aðmÞÞÞg expðiapxÞ:

(12)

At this point, we switch to a more concise, and we feel more

elegant, notation for the boundary conditions in terms of

Fourier multipliers. In this new notation, the Dirichlet condi-

tion (12) is

nðmÞ ¼ Dðm;m�1Þdðm�1Þ þ Uðm;m�1Þuðm�1Þ

� Dðm;mÞdðmÞ � Uðm;mÞuðmÞ (13)

(recall that d(0)¼ u(M): 0), and, by similar calculations, the

Neumann condition (10b) becomes

wðmÞ ¼ �Bðm�1ÞDðm;m�1Þdðm�1Þ þ Bðm�1ÞUðm;m�1Þuðm�1Þ

þ BðmÞDðm;mÞdðmÞ � BðmÞUðm;mÞuðmÞ: (14)

In these formulas, we use the Fourier multipliers

Dðm;lÞ½f� ¼
X1

p¼�1
expð�ibðlÞp ðaðmÞ � �aðlÞÞÞf̂p expðiapxÞ;

Uðm;lÞ½f� ¼
X1

p¼�1
expðibðlÞp ðaðmÞ � �aðlÞÞÞf̂p expðiapxÞ;

BðmÞ½f� ¼
X1

p¼�1
ðibðmÞp Þf̂p expðiapxÞ;

where the first two are “order zero” and the latter is “order

one.” We recall that a Fourier multiplier of order j maps a

function with (sþ j)-many L2 derivatives to a function with

s-many L2 derivatives.35 Thus, the operators D(m,l), U(m,l)

“take no derivatives,” while B(m), like the classical deriva-

tive, “takes one derivative.”

Thus, we have the following system of linear equations

to solve

A~z ¼~r (15)

where

~z ¼ ðuð0Þ; dð1Þ; uð1Þ;…; dðM�1Þ; uðM�1Þ; dðMÞÞT ;
~r ¼ ðnð1Þ;wð1Þ; nð2Þ;wð2Þ;…; nðMÞ;wðMÞÞT ;

and

A ¼

U1;0 �D1;1 �U1;1 0 0 0

B0U1;0 B1D1;1 �B1U1;1 0 0 0

0 D2;1 U2;1 �D2;2 �U2;2 0

0 �B1D2;1 B1U2;1 B2D2;2 �B2U2;2 0

..

. ..
.

0 0 0 DM;M�1 UM;M�1 �DM;M

0 0 0 �BM�1DM;M�1 BM�1UM;M�1 BMDM;M

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

Of course all of these operators are diagonalized by the Fou-

rier transform so we can solve, wavenumber-by-wavenum-

ber, the systems

Ap~zp ¼~rp (16)

where
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~zp ¼ ðuð0Þp ; dð1Þp ; uð1Þp ;…; dðM�1Þ
p ; uðM�1Þ

p ; dðMÞp Þ
T ;

~rp ¼ ðn̂ð1Þp ; ŵð1Þp ; n̂ð2Þp ; ŵð2Þp ;…; n̂ðMÞp ; ŵðMÞp Þ
T ;

and Ap is penta-diagonal

ðApÞ2m�1;2m�2 ¼ ðDm;m�1Þp ¼ expð�ibðm�1Þ
p ðaðmÞ � �aðm�1ÞÞÞ;

ðApÞ2m�1;2m�1 ¼ ðUm;m�1Þp ¼ expðibðm�1Þ
p ðaðmÞ � �aðm�1ÞÞÞ;

ðApÞ2m�1;2m ¼ �ðDm;mÞp ¼ � expð�ibðmÞp ðaðmÞ � �aðmÞÞÞ;
ðApÞ2m�1;2mþ1 ¼ �ðUm;mÞp ¼ � expðibðmÞp ðaðmÞ � �aðmÞÞÞ;
ðApÞ2m;2m�2 ¼ �ðBm�1Dm;m�1Þp

¼ �ðibðm�1Þ
p Þ expð�ibðm�1Þ

p ðaðmÞ � �aðm�1ÞÞÞ;
ðApÞ2m;2m�1 ¼ ðBm�1Um;m�1Þp

¼ ðibðm�1Þ
p Þ expðibðm�1Þ

p ðaðmÞ � �aðm�1ÞÞÞ;
ðApÞ2m;2m ¼ ðBmDm;mÞp ¼ ðib

ðmÞ
p Þ expð�ibðmÞp ðaðmÞ � �aðmÞÞÞ;

ðApÞ2m;2mþ1 ¼ �ðBmUm;mÞp
¼ �ðibðmÞp Þ expðibðmÞp ðaðmÞ � �aðmÞÞÞ;

for 1�m�M; formulas which produce indices outside the

range 1�m�M [i.e., (Ap)1,0 and (Ap)M,Mþ1] are ignored.

Since the system (15) is penta-diagonal it can be solved

quickly [in time OðMÞ] using the standard techniques. This

is the crucial observation which enables our accelerated

method for couplers with non-trivial interface shapes.

B. Non-trivial interfaces

To address the case of non-trivial interfaces, we can

again use the representation Eq. (11) together with

d
ð0Þ
p ¼ u

ðMÞ
p � 0. The Dirichlet and Neumann conditions

remain as (13) and (14), respectively; however, we must now

understand the operators D(m,l) and U(m,l) as g(m) dependent

Dðm;lÞðgðmÞÞ½f� ¼
X1

p¼�1
expð�ibðlÞp ðaðmÞ þ gðmÞ � �aðlÞÞÞ

� f̂p expðiapxÞ;

Uðm;lÞðgðmÞÞ½f� ¼
X1

p¼�1
expðibðlÞp ðaðmÞ þ gðmÞ � �aðlÞÞÞ

� f̂p expðiapxÞ:

Following our previous developments, we pursue the FE

method20 beginning with the assumption that the interfaces

g(m) are deviations of the trivial interface case, and that these

deviations can be parametrized by the single variable e, i.e.,

g(m)(x)¼ ef (m)(x). A generalization of the work of Nicholls

and Reitich31 will show that the fields v(m) depend analyti-

cally upon e so that the expansions,

vðmÞ ¼ vðmÞðx; y; eÞ¼
X1

p¼�1
dðmÞp ðeÞ expðiðapx� bðmÞp ðy� �aðmÞÞÞÞ

þ uðmÞp ðeÞ expðiðapxþ bðmÞp ðy� �aðmÞÞÞÞ

¼
X1

p¼�1

X1
n¼0

fdðmÞp;n expðiðapx� bðmÞp ðy� �aðmÞÞÞÞ

þ uðmÞp;n expðiðapxþ bðmÞp ðy� �aðmÞÞÞÞgen; (17)

can be rigorously justified provided that the f (m) are suffi-

ciently small and smooth. To find the coefficients d
ðmÞ
p;n and

u
ðmÞ
p;n we use the conditions (13) and (14) with the dependence

of e emphasized:

nðmÞ ¼ Dðm;m�1ÞðeÞdðm�1ÞðeÞ þ Uðm;m�1ÞðeÞuðm�1ÞðeÞ
� Dðm;mÞðeÞdðmÞðeÞ � Uðm;mÞðeÞuðmÞðeÞ; (18)

and

wðmÞ ¼ Dðm;m�1ÞðeÞð�Bðm�1Þ � eð@xf Þ@xÞdðm�1ÞðeÞ
þ Uðm;m�1ÞðeÞðBðm�1Þ � eð@xf Þ@xÞuðm�1ÞðeÞ
� Dðm;mÞðeÞð�BðmÞ � eð@xf Þ@xÞdðmÞðeÞ
� Uðm;mÞðeÞðBðmÞ � eð@xf Þ@xÞuðmÞðeÞ: (19)

To use these, we need the Taylor expansions

Dðm;lÞðef ðmÞÞ ¼
X1
n¼0

Dðm;lÞn ðf ðmÞÞen;

Uðm;lÞðef ðmÞÞ ¼
X1
n¼0

Uðm;lÞn ðf ðmÞÞen;

where D
ðm;lÞ
0 ¼ Dðm;lÞð0Þ; U

ðm;lÞ
0 ¼ Uðm;lÞð0Þ,

Dðm;lÞn ðf ðmÞÞ½f� ¼ FðmÞn ð�BðlÞÞnD
ðm;lÞ
0 f; (20a)

Uðm;lÞn ðf ðmÞÞ½f� ¼ FðmÞn ðBðlÞÞ
nU
ðm;lÞ
0 f; (20b)

and FðmÞn ¼ ððf ðmÞÞnÞ=n!. With these, we can realize the follow-

ing recursions from Eqs. (18) and (19): At order zero, we have

D
ðm;m�1Þ
0 d

ðm�1Þ
0 þ U

ðm;m�1Þ
0 u

ðm�1Þ
0 � D

ðm;mÞ
0 d

ðmÞ
0

� U
ðm;mÞ
0 u

ðmÞ
0 ¼ nðmÞ; (21a)

� Bðm�1ÞD
ðm;m�1Þ
0 d

ðm�1Þ
0 þ Bðm�1ÞU

ðm;m�1Þ
0 u

ðm�1Þ
0

þ BðmÞD
ðm;mÞ
0 d

ðmÞ
0 � BðmÞU

ðm;mÞ
0 u

ðmÞ
0 ¼ wðmÞ; (21b)

which, of course, is simply Eqs. (13) and (14) and we can

solve this system, for each wavenumber, in linear time in M.

For n> 0, we obtain

D
ðm;m�1Þ
0 dðm�1Þ

n þ U
ðm;m�1Þ
0 uðm�1Þ

n � D
ðm;mÞ
0 dðmÞn

� U
ðm;mÞ
0 uðmÞn ¼ QðmÞn ; (22a)

� Bðm�1ÞD
ðm;m�1Þ
0 dðm�1Þ

n þ Bðm�1ÞU
ðm;m�1Þ
0 uðm�1Þ

n

þ BðmÞD
ðm;mÞ
0 dðmÞn � BðmÞU

ðm;mÞ
0 uðmÞn ¼ TðmÞn ; (22b)

where

QðmÞn ¼ �
�Xn

l¼1

D
ðm;m�1Þ
l d

ðm�1Þ
n�l þ U

ðm;m�1Þ
l u

ðm�1Þ
n�l

� D
ðm;mÞ
l d

ðmÞ
n�l � U

ðm;mÞ
l u

ðmÞ
n�l

�
; (23a)
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TðmÞn ¼ �
�Xn

l¼1

�Bðm�1ÞD
ðm;m�1Þ
l d

ðm�1Þ
n�l

� ð@xf ÞDðm;m�1Þ
l�1 @xd

ðm�1Þ
n�l þ Bðm�1ÞU

ðm;m�1Þ
l u

ðm�1Þ
n�l

� ð@xf ÞUðm;m�1Þ
l�1 @xu

ðm�1Þ
n�l þ BðmÞD

ðm;mÞ
l d

ðmÞ
n�l

þ ð@xf ÞDðm;mÞl�1 @xd
ðmÞ
n�l � BðmÞU

ðm;mÞ
l u

ðmÞ
n�l

þ ð@xf ÞUðm;mÞl�1 @xu
ðmÞ
n�l

�
(23b)

are known from the solution at previous orders. Using the

calculation above in Eq. (20), we can simplify the terms in

Eq. (23)

QðmÞn ¼ �
�Xn

l¼1

F
ðmÞ
l ð�Bðm�1ÞÞlDðm;m�1Þ

0 d
ðm�1Þ
n�l þ F

ðmÞ
l

� ðBðm�1ÞÞlUðm;m�1Þ
0 u

ðm�1Þ
n�l � F

ðmÞ
l ð�BðmÞÞl

D
ðm;mÞ
0 d

ðmÞ
n�l � F

ðmÞ
l ðBðmÞÞ

lU
ðm;mÞ
0 u

ðmÞ
n�l

�
; (24a)

TðmÞn ¼ �
�Xn

l¼1

F
ðmÞ
l ð�Bðm�1ÞÞlþ1D

ðm;m�1Þ
0 d

ðm�1Þ
n�l

� ð@xf ÞFðmÞl�1@xð�Bðm�1ÞÞl�1D
ðm;m�1Þ
0 d

ðm�1Þ
n�l

þ F
ðmÞ
l ðBðm�1ÞÞlþ1U

ðm;m�1Þ
0 u

ðm�1Þ
n�l

� ð@xf ÞFðmÞl�1@xðBðm�1ÞÞl�1U
ðm;m�1Þ
0 u

ðm�1Þ
n�l

� F
ðmÞ
l ð�BðmÞÞlþ1D

ðm;mÞ
0 d

ðmÞ
n�l

þ ð@xf ÞFðmÞl�1@xð�BðmÞÞl�1D
ðm;mÞ
0 d

ðmÞ
n�l

� F
ðmÞ
l ðBðmÞÞ

lþ1U
ðm;mÞ
0 u

ðmÞ
n�l

þ ð@xf ÞFðmÞl�1@xðBðmÞÞl�1U
ðm;mÞ
0 u

ðmÞ
n�l

�
: (24b)

Our key observation is that Eq. (22) is simply Eq. (15) with

the right hand side replaced by

~Rn ¼ ðQð1Þn ; Tð1Þn ;Qð2Þn ; Tð2Þn ;…;QðMÞn ; TðMÞn Þ
T

and can, therefore, be solved rapidly via standard techniques.

In fact, a quick count of operations yields a work estimate of

OðMN2Nx logðNxÞÞ if we truncate our Fourier-Taylor series

fdðmÞp;n ; u
ðmÞ
p;n g after Nx modes and N orders. More precisely, at

every Taylor order 0� n�N, and every wavenumber –Nx/

2� p�Nx/2� 1, we solve a linear system of size M in linear

time. To form the right hand sides of the linear system

requires fast convolutions [via the FFT algorithm in time

OðNx logðNxÞÞ] and a sum of length n (over indices

0� l� n� 1).

This is to be contrasted with the work of Wilcox et al.3

who solve these layer problems sequentially using the two-

layer solver of Bruno and Reitich.20 For instance, in the

three-layer case outlined in Sec. II, incident radiation from

below results in a field scattered by the lowest layer at

y ¼ �hþ hðxÞ which is partially reflected downward and par-

tially transmitted upward. Wilcox et al compute these at the

interface y ¼ �hþ hðxÞ with a two-layer solver, but now must

account for the fact that the transmitted field will interact

with the layer at y ¼ �gþ gðxÞ producing a scattered field

transmitting further up the structure and a reflected field

which travels back to y ¼ �hþ hðxÞ. This transmitted/

reflected pair is computed in the second “bounce,” but this

procedure continues ad infinitum (albeit with decreasing am-

plitude in the inner part of the structure at every bounce). So,

to compare with the cost of our new approach, that of Wil-

cox et al. is OðBN2Nx logðNxÞÞ, where B is the number of

bounces required to reach a certain error tolerance. These

authors report values of B in the range of 500–1000 for con-

figurations with M¼ 2 interfaces, clearly disadvantaged with

respect to our new approach.

IV. NUMERICAL VALIDATION

In this section, we show how the algorithms we have

described can be used in multi-layer simulations. In brief,

the method discussed above can be summarized as a Fourier

Collocation36/Taylor method29 enhanced by Padé summa-

tion techniques.37 In more detail, we approximate the fields

v(m), cf. Eq. (17), by

vðm;Nx;NÞ ¼
XNx=2�1

p¼�Nx=2

XN

n¼0

fdðmÞp;n expðiðapx� bðmÞp ðy� �aðmÞÞÞÞ

þ uðmÞp;n expðiðapxþ bðmÞp ðy� �aðmÞÞÞÞgen; (25)

which are then inserted into Eq. (22). At this point, the only

considerations are how the convolution products present in

the right hand sides, fQn, Rng cf. Eq. (23), are to be com-

puted, and how the sum in e is to be formed. For the former,

we utilize the discrete Fourier transform accelerated by the

fast Fourier transform algorithm,36 and for the latter, we ap-

proximate the truncated order N Taylor series by its N/2�N/2

Padé approximant. To make all of this absolutely clear, we

recall37 that if an analytic function,

FðeÞ ¼
X1
n¼0

Fne
n;

is approximated by its order N truncation,

FNðeÞ ¼
XN

n¼0

Fne
n;

then the convergence of FN to F can typically be greatly
enhanced with the use of the P – Q Padé approximant

½P=Q�ðeÞ ¼

XP

l¼0

ale
l

1þ
XQ

m¼1

bmem

� FNðeÞ;

where PþQ¼N. Algorithms for the computation of

the falg and fbmg are readily available37 and easy to

implement.
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A. Convergence

To verify our code, we compare with a configuration in

which exact solutions are readily available; the specific solu-

tion we choose is unphysical; however, it does provide defin-

itive evidence for the convergence of our scheme. We note

that in each of the layers there are solutions of the form

vðmÞðx; yÞ ¼ AðmÞup eiðapxþbðmÞp yÞ þ A
ðmÞ
downeiðapx�bðmÞp yÞ;

0 � m � M; (26)

for any integer p. Enforcing A
ð0Þ
down ¼ A

ðMÞ
up ¼ 0 and choosing

the rest of the A
ðmÞ
up and A

ðmÞ
down provides us with an easily com-

puted and manipulated exact solution (which is neither gen-

erated by plane-waves nor continuous across layer

interfaces). With these choices and Eq. (26), the jumps in

Dirichlet data, n(m), and Neumann data, w(m), cf. Eq. (10),

can be readily computed.

To verify our implementation we consider the three-

layer case

bu ¼ 1:1; bv ¼ 2:2; bw ¼ 3:3;

�g ¼ �1; gðxÞ ¼ e cosðxÞ; �h ¼ 1; hðxÞ ¼ e sinð2xÞ;
(27)

e¼ 0.1, and

p ¼ 0; Að0Þup ¼ Að1Þup ¼ 1; A
ð1Þ
down ¼ A

ð2Þ
down ¼ 1;

in Eq. (26). For numerical parameters, we selected Nx¼ 128

and N¼ 24. In Table I, we report on the relative error in the

maximum (supremum or L1) norm in the entire computa-

tional domain [0, 2p] � [ymin, ymax] (we selected ymin¼�2

and ymax¼ 2).

From this data, we see that our new algorithm can pro-

duce spectrally accurate solutions throughout all layers and

at every wavenumber p.

B. Plane-wave and point-source scattering

We now present the results of the two numerical experi-

ments featuring three- and five-layer structures. In both of

these experiments, we have chosen d¼ 2p periodic interfa-

ces with a¼ 0.1. In the three-layer case, we have selected

bu ¼ 1:1; bv ¼ 2:2; bw ¼ 3:3;

�g ¼ �1; gðxÞ ¼ e cosðxÞ; �h ¼ 1; hðxÞ ¼ e sinð2xÞ;
(28)

cf. Eq. (28), and e¼ 0.1. For numerical parameters, we

selected Nx¼ 128 and N¼ 24. To verify the accuracy of our

simulations, we consider the “energy defect” in our solution.

For a lossless structure like the ones considered in this paper,

it is known that the total energy is conserved.33 This princi-

ple can be stated precisely in terms of the efficiencies, e
ðjÞ
p ,33

eð0Þp ¼
juð0Þ

2

p jbð0Þp

b
p 2 Uð0Þ ¼ fp j a2

p < ðkð0ÞÞ
2g;

eðMÞp ¼
jdðMÞ

2

p jbðMÞp

b
p 2 DðMÞ ¼ fp j a2

p < ðkðMÞÞ
2g;

which characterize the “outgoing energy fraction” propagat-

ing away from the structure upward and downward, respec-

tively. Conservation of energy is now stated precisely as

X
p2Uð0Þ

eð0Þp þ
X

p2DðMÞ

eðMÞp ¼ 1;

and we can use as a diagnostic of convergence the “energy

defect”

d ¼ 1�
X

p2Uð0Þ

eð0Þp �
X

p2DðMÞ

eðMÞp : (29)

In Table II, we display results of this energy defect, d, as N,

the number of terms retained in the Taylor series is

increased. Clearly, the convergence is exponential (down to

machine zero) as we would expect.

In the five-layer case, we chose

TABLE I. Relative error (maximum norm) versus number of Taylor series

terms retained, cf. Eq. (25), in a simulation of scattering by a three-layer

structure. Physical parameters are reported in Eq. (27) while the numerical

parameters were Nx¼ 128 and Nmax¼ 24.

N Relative error

0 0.223127

2 0.00698624

4 0.000291307

6 1.27346 � 10�5

8 5.49206 � 10�7

10 2.76567 � 10�8

12 2.25986 � 10�9

14 2.04645 � 10�10

16 6.27159 � 10�11

TABLE II. Energy defect (d) versus number of Taylor series terms retained,

cf. Eq. (25), in a simulation of scattering by a three-layer structure. Physical

parameters are reported in Eq. (28) while the numerical parameters were

Nx¼ 128 and Nmax¼ 24.

N Energy defect (d)

0 0.00547926

2 0.00206438

4 �2.27676 � 10�5

6 �1.52311 � 10�7

8 3.93408 � 10�8

10 �3.12122 � 10�9

12 1.76252 � 10�10

14 �7.7639 � 10�12

16 2.60902 � 10�13

18 �5.44009 � 10�15

20 �3.33067 � 10�16

22 0

24 0
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bðmÞ ¼ ð1:1; 2:2; 3:3; 4:4; 5:5Þ;
aðmÞ ¼ ð1:5; 0:5;�0:5;�1:5Þ;
gðmÞ ¼ ðcosðxÞ; sinð2xÞ; cosð3xÞ; sinð4xÞÞ; (30)

and e¼ 0.1. Again, for numerical parameters, we selected

Nx¼ 128 and N¼ 24. In Table III, we display results of this

energy defect, d, as N, the number of terms retained in the

Taylor series is increased. Again, we note exponential con-

vergence (down to machine zero) as expected.

To conclude, we present results of some preliminary nu-

merical simulations of a point-source disturbance within the

lowest layer meant to be a very crude model of a subterra-

nean earthquake which fits into our periodic framework. As

we saw in Eq. (2g), the incident radiation can be quite gen-

eral and our point-source model is no exception provided

that we consider a periodic family of point sources, which is

quite natural given the periodic nature of our interfaces.

With this specification, we recall that such a function can be

defined with the upward propagating, periodized free-space

Green’s function33

Gqpðx; yÞ ¼ �
i

4

X1
p¼�1

eiapdH
ð1Þ
0 ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� pdÞ2 þ y2

q
Þ;

where H
ð1Þ
0 is the zeroth-order Hankel function of the first

kind. If we desire a singularity (e.g., an epicenter) at (x0, y0),

then the point-source is given by

wpsðx; yÞ ¼ Gqpðx� x0; y� y0Þ:

For utilization in our recursions, it is more convenient to use

the spectral representation33

Gqpðx; yÞ ¼
1

2id

X1
p¼�1

eiðapxþbpjyjÞ

bp

;

and, again, wps(x, y)¼Gqp(x � x0, y � y0). Setting wi¼wps,

(x0, y0)¼ (d/2, �20) and a¼ 0 (so that the point sources are

periodic rather than quasiperiodic), we can now test the

capabilities of our method in the three-layer configuration

outlined above; cf. Eq. (28) with e¼ 0.1. In Tables IV and

V, we report computations of the scattering efficiencies

e0and e�2, respectively, in the upper layer as the perturbation

order N is increased. As we have seen in all of the simula-

tions above, a rapid and stable convergence of the efficiency

is displayed as the perturbation order is increased resulting

in full double precision accuracy by N¼ 24.
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