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Seismic wave synthesis by Gaussian beam summation: A comparison
with finite differences

Th. George*, J. Virieux*, and R. Madariaga*

ABSTRACT

We apply Gaussian beam summation to the calcula­
tion of seismic reflections from complex interfaces,
introducing several modifications of the original
method. First, we use local geographical coordinates for
the representation of paraxial rays in the vicinity of the
recording surface, In this way we avoid the time­
consuming evaluation of the ray-centered coordinates of
the observation points. Second, we propose a method
for selecting the beams that ensures numerical stability
of the synthetic seismograms, Third, we introduce a
simple source wave packet that simplifies and stabilizes
the calculations of inverse Fourier transforms.

We compare reflection seismograms computed using
the Gaussian beam-summation method with those cal­
culated by finite differences. Two simple models are
used. The first is a continuous curved interface separ-

INTRODUCTION

Katchalov and Popov (1981) and Cerveny et al. (1982) re­
cently proposed the use of a sum of Gaussian beams as a
method for the numerical synthesis of seismograms in complex
heterogeneous media. Although the theoretical foundation for
the method is incomplete, several authors have shown that
Gaussian beam summation works for simple geometrical
models and that it yields results that compare favorably with
exact solutions when they are available, or with numerical
computations obtained by other techniques. See, for instance,
Cerveny and Klimes (1984), Nowack and Aki (1984), Ma­
dariaga and Papadimitriou (1985), and Beydoun and Ben­
Menahem (1985). As shown by Madariaga (1984), Gaussian
beams are an analytical continuation of the Maslov, or WKB,
techniques to complex values of the apparent slowness. The
field at the source is decomposed into a series of beams and
then each beam is propagated independently using the

ating an elastic layer from a free half-space. A double
caustic, or degenerate focal point, appears due to the
crossing of reflected rays. In this instance the finite­
difference simulation and the Gaussian beam summa­
tion are in excel1ent agreement. Both phase and ampli­
tude are modeled correctly for both the direct and
reverse branches. When compared to geometrical ray
theory, Gaussian beam summation provides a good ap­
proximation of the field near the caustics while geo­
metrical ray theory does not. The second, more com­
plex, model we consider is a trapezoidal dome with
sharp corners in the interface. The corners of the dome
in this model produce rather strong diffractions. Also,
creeping head waves propagate along the interface. The
results compare wel1 with the finite-difference simulation
except for the diffracted branches, where the traveltime
of diffracted waves is poorly approximated by the Gaus­
sian beam-summation method.

paraxial ray approximation (see, e.g., Cerveny and Psencik,
1984).

In order to use Gaussian beams, two problems have to be
solved. First, the source has to be decomposed into a sum of
Gaussian beams. This problem has been discussed by Cerveny
et al. (1982), Madariaga (1984), and Madariaga and Papadimi­
triou (1985) who obtained the decomposition of general
moment tensor sources. The problems of propagation, reflec­
tion, and refraction of Gaussian beams were discussed by
Cerveny et al. (1982), Cisternas et al. (1984), and Babich et al.
(1984). The latter authors give a new approach to Gaussian
beam theory that is much simpler than the parabolic equation
method original1y introduced by Babich and Pankratova
(1973),

METHOD

We very closely fol1ow the development of the Gaussian
beam technique as presented by Cerveny et al. (1982). The
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notation is the same. A synthetic acoustic seismogram is given
by the sum

where p and v are density and velocity of the medium at the
observation point, Po is the corresponding value at the source,
and E is explained below. The normal distance from the point
M to the central ray n is defined in Figure 1.

where (0 is the frequency, M is the observation point, <I> is the
takeoff angle of the central ray (see Figure 1), <1>, and <1>2 are
the limits of the sum of Gaussian beams, and <1>(<1» is the

excitation factor of the source. Complete expressions of <1> for
moment tensor sources may be found in Madariaga and Pa­
padimitriou (1985). Jl(<I» contains the product of all the reflec­
tion and transmission coefficients at the interfaces encountered
by the beam along its trajectory.

The complex beam amplitude and phase are given by

A = (iEPo VO)1 /2
2pvq

(4)

(3)

1 i<l>l [ 1 ]u(M, t) = - Re <1>(<1» Jl(<I» A(<I» -, d<l>,
1t t - e

<1>2

The conjugate canonical functions q and pare

where (ql' PI) and (q2' P2) are two fundamental solutions of
the paraxial ray approximation equations (also called dynamic
ray tracing by Cerveny and Hron, 1980) computed along the

ray <1>. The first solution corresponds to the "plane" wave
initial condition, and the second solution corresponds to a
point source. The latter provides the usual geometrical spread­
ing for point sources. The complex parameter E defines the
spread of Gaussian beams in the direction perpendicular to
the central ray. In homogeneous media, Cerveny et al. (1982)
showed that Im (E) was a measure of the beam width at the
waist located a distance Re (E) from the origin of the coordi­
nate. For general heterogeneous media, E has no clear mean­
ing.

At interfaces, P and q are connected by the formulas devel­
oped by Cerveny (1983), and the transmission and reflection
coefficients are calculated at the point where the central ray
impinges on the interface.

The time-domain equivalent of equation (1) is

(1)

(2)
P n2

e=t+-­
q 2 '

i

<l> l
u(M, (0) = <1>(<1» Jl(<I» A(<I» e- iro8

(<I>l d<l>,
<1>2

and

Source

FIG. 1. Definition of the ray-centered coordinate (s, n): s measures the arc length along the ray from the source to the
projection of the ray at the observation point M. n is the distance from the point M to the ray. Re (e) = constant is the
wavefront of the beam.
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(12)

approximation

where <Po defines the geometrical ray passing through the ob­
servation point M.

Numerical evaluation of equation (4) consists in discretizing
it choosing a set of central rays <Pi so that equation (1) is
replaced by

If we choose steps ~<Pi of constant takeoff angle for the
central rays, they appear at the surface with variable spacing.
As a result, the numerical results will be good where the ray
density is high and poor elsewhere. In order to improve the
numerical stability of the sum (11), we choose the central rays
so that they intercept the surface at relatively regular intervals.
For this purpose we use equation (7) which relates ~<P to ~n.

If the ray impinges on the recording surface with an incidence
angle qr, then ~x = ~n cos ('V) and, from equation (7),

(6)

(5)
1 a

!(t)=---.
1t t

Z + aZ

1 (P) ZOq, = 'q, +"2 q nq,'

where the index <P indicates that r P, q, and n depend on the
central ray under consideration. From paraxial ray theory
(Cerveny and Hron, 1980; Cerveny and Klimes, 1984),

Equation (4) is the basic expression used here to evaluate
synthetic seismograms. Each term under the integral is the
contribution of an individual Gaussian beam to the synthetic
seismogram at M. Each one of these Gaussian beams is denot­
ed by the takeoff angle <P of the central ray ofthe beam.

Designate <Po as the central ray which passes through the
receiver at M. This is the classical ray joining the source to M.
For this ray, the complex phase defined in equation (2) is
O(<Po) = ,(<Po) = '0' since n = O. For any other central ray in
its vicinity, the phase of the beam is

where 0' = 9 + ia, and a is a finite smoothing time. This is
necessary to eliminate the singularity in equation (4) when
t-> 9', which occurs when the central ray passes close to the
receiver at M. As shown by Madariaga and Papadimitriou
(1985), use of this imaginary perturbation to the phase 0 is
equivalent to using an elementary source function of the type

so that

and

In practice we choose ~x by trial and error, but a good rule of
thumb is that ~x should be less than one-half the dominant
wavelength of the source wave packet.

Equation (2) includes the distance n from every observation
point to the central ray of every Gaussian beam. This is a
difficult mathematical problem that has to be solved by nu­
merical methods. As shown by Madariaga (1984), it is much
more economical to use local geographical coordinates in the
vicinity of the observation point. For that purpose, we intro­
duce a local contact transformation from (q, p) in ray-centered
coordinates to the corresponding set of canonical variables
(~, 11) in geographical coordinates. 9 may also be easily ex­
pressed in the new variables. Cerveny (1984) found similar
results using coordinate transformations and phase matching
at the interface.

Ray tracing and the computation of the fundamental solu­
tions (ql' PI) and (qz, pz) of the paraxial ray equations were
obtained using the program RAY8l written by Cerveny and
Psencik (1984). In order to save computer time, synthetics are
calculated only in a time window for which there is a signifi­
cant contribution of the beams to the sum (4). The smoothing
parameter a in equation (5) was chosen equal to the step ~t.

Finally, the beam "width" parameter E was chosen as suggest­
ed by Cerveny et al. (1982) as

E = i Iqz/q I I,

(7)

(8)

Then, taking the second derivative of equation (6) and using
the above results, we find that

in the vicinity of the geometrical ray <Po. Also, at nq, = 0,

d,
dn = 0,

dO
-=0.
dn

dZO = !!. _ Pz = 9"
dnz q qz .

Expanding 9q, in a Taylor series about <Po' we get

so that finally, using equation (7), we obtain

(9)

Equation (9) relates the complex phase O(<p) to the takeoff
angle <P at the source for the beams in the vicinity of the
geometrical ray <Po' It may be used to prove that the saddle­
point approximation to equation (1) yields the ray-theoretical

but it was averaged over a number of central rays passing in
the vicinity of the observer.

In the case of the corner model, we calculated synthetics
using the Maslov approximation by making E very large. As
shown by Madariaga (1984), when the proper initial con­
ditions are used for the fundamental solution (q" PI)' the
Gaussian beam method reduces to Maslov's method at the
source (see Chapman and Drummond, 1982).
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Table 1. Physical properties of the models.

Cusp Corner

Velocity Layer 3.46 krn/s 2.5 km/s
Half-space 4 krn/s

Density Layer 2.5 kg/dm ' 2.6 kg/dm"
Half-space 3.1 kg/drrr'

Source C( 4 S-2 1000 S-2
characteristics to 1.35 S .2 S

Peak .8 Hz 13 Hz
frequency

Upper 1.5 Hz 16.5 Hz
half-power
frequency

GEOMETRY OF THE MODELS

We consider two models consisting of a single homoge­
neous layer overlying a homogeneous half-space. A complex
interface separates the two media. Although more complex
models incorporating both P- and SV-waves may be studied,
we have deliberately kept complexity at a minimum in order
to isolate the main features of reflection seismograms. A point
source is located on the free surface. The vertical axis points
downward into the medium, and the offset distance is mea­
sured along the free surface from the source. We consider
seismograms recorded at geophones located only on the free
surface.

The reflector shape is chosen to be complex enough to pro­
duce several different types of wave phenomena of interest in
seismic modeling, namely, reflections, caustics, diffractions,
and creeping head waves. Two basic interfaces are considered,
the first being a smooth curved interface which produces a
double caustic at the free surface, and the second, an interface
with sharp corners which produces strong multiply diffracted
waves. These two models are shown in Figure 2. The first
model is referred to as the "cusp" model, while the second one

" 4- . - 3 · - 2 · - 1· o · 1 · 2 · J . 4- . 5 · 6 ·

where to is a time shift chosen to obtain a causal signal:
set)~ 0 for t < 0, and a is related to peak frequency (.39~)
and the upper half-power frequency (.528~) of the source
spectrum (Alford et aI., 1974). These quantities are given in
Table 1.

Because we are only interested in waves reflected by the
interface, the direct waves had to be eliminated from the finite­
difference seismograms. They were eliminated by substracting
from the seismogram for the complete medium the seismo­
grams obtained for a finite-difference simulation of a homoge­
neous half-space with the same physical parameters as the
upper medium. This subtraction also removes the spurious
reflections produced by the two vertical sides of the finite­
difference grid, but it does not eliminate the reflections of these
spurious waves by the interface.

In the cusp model, our first example, we focus attention on
the computation of the reflected waves near the bright spot
produced by the intersection of the caustics with the free sur­
face. To avoid problems with critically reflected waves, we
consider that the interface is free, i.e., the lower medium does
not exist. For the corner model, the sharp corners of the inter­
face produce diffraction. The two media are considered to be
elastic since this allows us to compare the amplitudes of dif­
fracted waves with respect to creeping head waves. Using
these two examples, and comparing their solutions by finite
differences and Gaussian beam summation, we determine the
validity of the latter method.

is called the "corner" model. The velocity and density of the
media are presented in Table l.

Waves are emitted from a source at the free surface within a
frequency window chosen so as to satisfy the requirements of
the high-frequency ray approximation, and to allow compu­
tation with a low-frequency method such as finite differences
(Virieux, 1984, 1986). The frequency content is controlled with
the following source function:

set) = (t - to)e-·(I-to)' ,
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FIG. 2. Geometry of the models. The half-space is grey. The
source is located at the origin of coordinates, and the receivers
are indicated by the dotted line along the free surface.
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THE CUSP MODEL WITH A FREE INTERFACE

FIG. 3. Cusp model: ray diagrams and traveltime curves
recorded at the free surface.
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FIG. 4. Results for the cusp model: Seismic profiles are calcu­
lated (a) by finite differences, (b) by Gaussian beam summa­
tion, and (c)by geometrical ray theory.

The comparison between Gaussian beam summation and
finite differences starts with a simple model where the smooth
curved interface is free. The free-boundary conditions were
obtained by setting the shear modulus of the lower medium
equal to zero for finite differences, and by choosing a reflection
coefficient of -1 in Gaussian beam summation. The fre­
quency range of synthetics (see Table 1) is low enough for
finite-difference modeling to be valid, and high enough with
respect to the wavelength of spatial variations of the interface
so that Gaussian beam summation may be applied.

The curvature of the interface produces a double caustic (or
"swallow tail") of reflected waves. These two caustics intersect
at a focal point at a depth of 18 krn, and they appear on the
free surface at -47 km and -67 km, as shown in Figure 3.
Ray theory breaks down in the vicinity of the two caustics
where infinite amplitudes are obtained. Between these caustics
there is a triplication of arrival times as shown in Figure 3.
Branch 1 is the wave reflected beneath the source, while
branch 3 is the wave reflected from the shallow part of the
interface. Note the high density of rays leaving the source that
is needed to ensure a correct density of exit points for the
modeling of branch 3. Branch 2 is expected to have a strong
amplitude because of its proximity to the focal point.

Three seismic profiles are presented for this geometry in
Figure 4. The first profile (a) was obtained by finite differences.
The second one (b) is the Gaussian beam-summation profile,
while the third profile (c) was obtained from geometrical ray
theory, avoiding the immediate vicinity of the caustics where
this method breaks down. The low-frequency signal used to
keep finite-difference costs at a reasonable level somewhat
hides the separation of the three branches, but they are quite
clear in the ray-theoretical seismograms.

The agreement between finite differences and Gaussian
beam summation is quite good in this example. From Gaus­
sian beam-summation modeling, we can see that the strong
amplitude observed near the triplication comes from branch 2.
The diffraction from the caustics, with its rapid decrease of
amplitude, is correctly modeled by Gaussian beam summa­
tion. This means that the parabolic wavefront of individual
Gaussian beams in Gaussian beam summation is a good ap­
proximation for this type of diffraction. The approximation
for the case of diffraction by a reflector with discontinuities is
not as good, as will be discussed in the next section. The
asymmetry between the diffraction from either of the caustics
may be explained by variations of the angle of reflection at the
interface. As seen in Figure 3, this angle is nearly normal for
the caustic at -47 km, producing a strong amplitude in a
narrow range of offsets; however, the angle is close to 45
degrees for the caustic at - 67 km, spreading the diffraction
on a wider range.

The ray-theoretical seismograms, shown in Figure 3c, quite
clearly show that the reverse branch (number 2) is Hilbert
transformed (90 degrees out of phase) with respect to the
direct phases of branches 1 and 3. The agreement between the
three figures inside the domain of applicability of ray theory is
excellent and demonstrates the validity of finite-difference and
Gaussian beam summation in these "classical" areas. If we
take the finite-difference simulation as exact within the fre­
quency range under consideration, then Gaussian beam sum-
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FIG. 6. Seismic profiles for the corner model, free boundary
conditions at the interface. The profiles are calculated (a) by
finite differences, and (b) by Gaussian beam summation.
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FIG. 5. Corner model: description of the different waves ob­
served in the finite-difference profiles: specular reflections
(1, 2, 3), diffractions (a, b, c) by the corners (A, B, C), and
multiple diffractions (a', a", b', c', d). On the top is shown a
complete set of traveltime curves, including all geometrical
and diffracted arrivals.

THE CORNER MODEL

mation also gives good results even beyond the caustics, in the
Fresnel zones of caustic diffraction. This extends and confirms
the results of Cerveny et al. (1982) and Madariaga and Papa­
dimitriou (1985) for simple caustics due to vertical heterogen­
eity. Whenever the paraxial approximation implicit in the con­
struction of individual Gaussian beams is valid, the results of
this method are very good.

A more difficult model for ray theory and Gaussian beam
summation is a schematic salt-dome model with sharp cor­
ners, which we call the corner model (Figure 5). The adopted
frequency range (see Table 1) gives six finite-difference grids
per characteristic wavelength (250 m) of the source. Some nu­
merical grid dispersion will be apparent in the finite-difference
seismograms, since the rule of thumb of 10 nodes per wave­
length is not satisfied in this calculation. On the other hand,
this wavelength is only one-quarter of the length of the roof of
the salt dome, which is a lower limit for the validity of the
high-frequency method. The main difficulties for the Gaussian
beam-summation method are the sharp corners of the inter­
face which generate diffracted waves, and the presence of
creeping head waves that propagate along the interface in the
higher velocity medium and continuously radiate upward into
the upper layer. In the following discussion, the finite­
difference results will be considered "exact."

A free interface will be sufficient for studying corner diffrac­
tions. Figure 6 presents the profiles obtained with the finite­
difference (a) and Gaussian beam-summation (b) methods. The
kinematic interpretation of the different arrivals in these pro­
files is shown at the top of Figure 5. Reflections (1) on the top
of the salt dome, (2) on the lateral wall, and (3) on the horizon­
tal interface are correctly modeled by Gaussian beam summa­
tion. Diffractions (a) and (c) by the two corners without
shadow zones are approximately modeled, while diffraction (b)
does not have a correct amplitude. In the backward direction,
an unphysical extension of the diffracted branch (a) might be
seen in front of the true diffraction. Diffraction (d) seems to be
emitted by point D' instead of point D, as shown by the shift
in the arrival time. Diffractions (a'), (a"), (b'), and (c') are not
modeled by Gaussian beam summation because they are due
to secondary diffraction of the already diffracted fronts (a) and
(b).

A more realistic model is obtained with an interface be­
tween two elastic media. Finite-differences (a), Gaussian beam­
summation (b), Maslov (c), and ray theory (d) profiles for such
an example are given in Figure 7. First, we notice that the
ray-theory results are correct where they can be computed, i.e.,
for mirror reflections (I), (2), and (3). Second, amplitudes from
finite differences and Gaussian beam summation are com­
parable except in the zone noted in gray on the interpretation
of arrival times at the top of the Figure 5. Before describing
this discrepancy, we present results for reflections and diffrac­
tions.

Subcritical and postcritical reflections and diffractions can
be better observed on individual seismograms for different
observation positions, as shown in Figure 8. In the first seis­
mogram, calculated at x = .2 km, the reflection (2) and the
diffraction (c) are in perfect agreement, while the weak arrival
(b) is not present in the Gaussian beam-summation seismo-
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DISCUSSION AND CONCLUSION

We used finite differences and Gaussian beam summation
to model reflections from complex interfaces. These two meth­
ods have very different domains of validity. The finite­
difference method provides a complete solution of the wave
equation, including all direct waves, reflections, and diffrac­
tions, but it is essentially a low-frequency method because the
cost of solutions becomes prohibitive at high frequencies. The
other method is asymptotically valid only at high frequencies
because it is based on an extension of ray theory. Thus, it is
particularly appropriate for modeling refloctions and refrac­
tions. Its validity for computing head waves and diffractions
was addressed. Comparing solutions obtained by the two
methods, we attempted to determine the validity of Gaussian
beam-summation solutions. In these comparisons we assumed
that the finite-difference solutions were exact, although at
times the rule of thumb of 10 grids per wavelength was viol­
ated. Such a comparison is not entirely accurate when evalu­
ating the performances of the Gaussian beam-summation
method since the ratio of the wavelength to the radius of
curvature of the interface was only on the order of 3, which is
very low for ray-theoretical methods. Nevertheless, the com­
parisons were very satisfactory, especially for the case of the
continuous interface.

Several problems that appear in the computer imple­
mentation of the Gaussian beam method had to be solved
before we could calculate the profiles presented here. The most
important of these problems is the use of local coordinates
determined by the geometry of the receivers. In these coordi­
nates, it is not necessary to determine the ray-centered coordi­
nates of every observation point with respect to every central
ray to be used in the Gaussian beam summation. Except for
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grams. In the next seismogram, at 1.5 km, the diffraction (a) is
modeled with a cutoff phase in front of it which is stronger
than the true phase. The diffraction (b) is very weak for both
methods. The phase (a') cannot be modeled by the Gaussian
beam-summation method because this is the secondary dif­
fraction of an already diffracted wave. The last seismogram, at
5.2 km, shows the diffraction (d) with its arrival-time shift and
a strong amplitude phase in front of it. This strong phase
appears only in the finite-difference simulations. It corre­
sponds to a creeping head wave generated at the top of the
salt dome, where reflection is supercritical. When they reach
the corner B of the salt dome, these creeping waves are radi­
ated into the upper medium and contribute to the observed
amplitude of the gray zone (Figure 5). These waves are not
modeled by the Gaussian beam-summation method because
their trajectories do not correspond to classical raypaths.
Therefore they cannot be written in the simple form of equa­
tion (I).
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FIG. 7. Seismic profiles for the corner model, elastic half-space.
The profiles are calculated (a) by finite differences, (b) by
Gaussian beam summation, (c) by Maslov theory, and (d) by
geometrical ray theory.

FIG. 8. Individual seismograms for the corner model with an
elastic half-space calculated at three different points on the
fr.ee surface. For each distance, we compare the finite­
difference result (top) with the Gaussian beam-summation
seismogram (below).
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ray tracing, this is the most expensive and time-consuming
part of the original method proposed by Cerveny et al. (1982).
Local coordinates are also a natural way to solve the problem
of calculating Gaussian beams in the vicinity of a free surface.
In fact, if one wanted to use ray-centered coordinates near a
boundary, a recipe for the continuation of the structure
beyond the free surface would have to be provided. Another
crucial point is the choice of the set of central rays used to
generate individual Gaussian beams. For complex structures,
the usual method of tracing rays at equal intervals of takeoff
angle gives very poor results because the end points of these
rays on the surface will be poorly distributed. In order to
ensure a uniform approximation of the solution and to avoid
problems of undersampling of the signals, it is necessary to
obtain a uniform distribution of rays on the recording surface.
A uniform distribution is most easily obtained using the par­
axial approximation to estimate the locations of central rays
in the vicinity of every recording site. The same approxi­
mation may be used to determine the most adequate spacing
of rays on the recording surface for a given sampling interval
in the time domain.

Two other important problems are as follows. (1) The use of
an appropriate wavelet for the calculation of the beam sum­
mation is extremely important because the contribution to the
beam summation is singular for beams that are very close to
the recording site. A sampling function is necessary to avoid
these singularities. Cerveny et al. (1982) proposed to use
Gabor wavelets which were nearly monochromatic. We prefer
to use a simple wavelet introduced by Madariaga and Papadi­
mitriou (1985) which produces a broadening of the signal over
a few time intervals which may be convolved with any desired
wavelet after the summation has been evaluated. (2) The prac­
tical problem of choosing the beam-width parameter has been
solved by choosing an average over a certain region on the
recording surface. This avoids the usual problem of rapid vari­
ation from zero to infinity near caustics of the optimum beam
width proposed by Cerveny et al. (1982).

The results show that Gaussian beam summation yields ex­
cellent results when the signal is strong, but it deteriorates
when the observation point is in a shadow zone. In fact, Gaus­
sian beam summation provides a reasonable approximation
for diffraction at small distances from the boundary of the real
wavefront, but the approximation deteriorates away from the
real wavefront. This occurs mainly because the parabolic
wavefronts of Gaussian beams are poor approximations to the
circular wavefronts of diffracted waves. The problem is exag­
gerated in our profiles because of the very long wavelength
that was used in order to keep finite-difference costs at a
reasonable level. Another problem with Gaussian beam sum­
mation appears with conical wavefronts or head waves. In
finite-difference simulations, it appears that head waves creep
along the interface, following its curvature and turning around
the corners. This problem is also exaggerated here because of
the low frequency of the signals, but it is certainly a limitation
for Gaussian beam summation. For all reflected waves, both
precritical and postcritical waves, Gaussian beam summation
yields excellent results, agreeing with classical ray theory when
the receivers are not in the vicinity of critical points. It also
gives excellent results for reverse branches and in the vicinity
of caustics, where diffraction is also appropriately modeled.
Thus, at a minimum extra cost when compared to geometrical

ray theory, we get solutions that have a much broader range
of validity. Gaussian beam summation has the additional ad­
vantages over ray theory that it does not require the use of
two-point ray tracing, and that all the branches of geometrical
rays arriving at a certain recorder are automatically calcu­
lated.

To compare computer costs, finite-difference simulations on
200 x 200 grids were done on a CRAY I computer, while all
Gaussian beam summations were carried out on a PRIME
9950 minicomputer. The ratio of computer time is about
100: I. In fact, it is possible to run two-dimensional Gaussian
beam calculations interactively. This is very convenient for
choosing the best parameters and selecting the most appropri­
ate set of central rays for a problem. Finally, Gaussian beam
summation provides a clear interpretation of the seismic pro­
files in terms of wavefronts and ray trajectories. Finite­
difference solutions, on the other hand, require extensive inter­
pretation employing geometrical ray theory in order to
explain the different phases that appear in the synthetic seis­
mograms. The two methods are in fact complementary, finite
differences being specially adequate at low frequencies, while
Gaussian beam summation provides a very complete synthetic
at high frequencies.

In conclusion, we have shown that, within its limits of valid­
ity, Gaussian beam summation gives results that compare very
favorably with those obtained by finite differences, at a frac­
tion of the cost of the latter method. The results are particu­
larly good for strong geometrical reflections and caustics.
They are poorer for diffracted arrivals and creeping head
waves.
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