80 research outputs found
New two-colour light curves of Q0957+561: time delays and the origin of intrinsic variations
We extend the gr-band time coverage of the gravitationally lensed double
quasar Q0957+561. New gr light curves permit us to detect significant intrinsic
fluctuations, to determine new time delays, and thus to gain perspective on the
mechanism of intrinsic variability in Q0957+561. We use new optical frames of
Q0957+561 in the g and r passbands from January 2005 to July 2007. These frames
are part of an ongoing long-term monitoring with the Liverpool robotic
telescope. We also introduce two photometric pipelines that are applied to the
new gr frames of Q0957+561. The transformation pipeline incorporates
zero-point, colour, and inhomogeneity corrections to the instrumental
magnitudes, so final photometry to the 1-2% level is achieved for both quasar
components. The two-colour final records are then used to measure time delays.
The gr light curves of Q0957+561 show several prominent events and gradients,
and some of them (in the g band) lead to a time delay between components of 417
+/- 2 d (1 sigma). We do not find evidence of extrinsic variability in the
light curves of Q0957+561. We also explore the possibility of a delay between a
large event in the g band and the corresponding event in the r band. The gr
cross-correlation reveals a time lag of 4.0 +/- 2.0 d (1 sigma; the g-band
event is leading) that confirms a previous claim of the existence of a delay
between the g and r band in this lensed quasar. The time delays (between quasar
components and between optical bands) from the new records and previous ones in
similar bands indicate that most observed variations in Q0957+561 (amplitudes
of about 100 mmag and timescales of about 100 d) are very probably due to
reverberation within the gas disc around the supermassive black hole.Comment: 13 pages, 9 figures. Accepted for publication in A&
New VR magnification ratios of QSO 0957+561
We present VR magnification ratios of QSO 0957+561, which are inferred from
the GLITP light curves of Q0957+561A and new frames taken with the 2.56m Nordic
Optical Telescope about 14 months after the GLITP monitoring. From two
photometric approaches and a reasonable range for the time delay in the system
(415-430 days), we do not obtain achromatic optical continuum ratios, but
ratios depending on the wavelength. These new measurements are consistent with
differential extinction in the lens galaxy, the Lyman limit system, the damped
Ly-alpha system, or the host galaxy of the QSO. The possible values for the
differential extinction and the ratio of total to selective extinction in the V
band are reasonable. Moreover, crude probability arguments suggest that the ray
paths of the two components cross a similar dusty environment, including a
network of compact dust clouds and compact dust voids. As an alternative (in
fact, the usual interpretation of the old ratios), we also try to explain the
new ratios as caused by gravitational microlensing in the deflector. From
magnification maps for each of the gravitationally lensed images, using
different fractions of the surface mass density represented by the microlenses,
as well as different sizes and profiles of the V-band and R-band sources,
several synthetic distributions of V-band and R-band ratios are derived. In
some gravitational scenarios, there is an apparent disagreement between the
observed pair of ratios and the simulated distributions. However, several
microlensing pictures work well. To decide between either extinction, or
microlensing, or a mixed scenario (extinction + microlensing), new
observational and interpretation efforts are required.Comment: PS and PDF versions are created from the LaTeX file and 5 EPS
figures, two additional figues (Figs. 6 and 7) in JPEG format, scheduled for
the ApJ 20 January 2005 issu
Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam
The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise
the physics potential through a sizable increase in the luminosity up to 6 · 1034 cm−2
s
−1
. A
consequence of this increased luminosity is the expected radiation damage at 3000 fb−1
after ten
years of operation, requiring the tracking detectors to withstand fluences to over 1 · 1016 1 MeV
neq/cm2
. In order to cope with the consequent increased readout rates, a complete re-design of the
current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at
the Diamond Light Source with a 3 µm FWHM 15 keV micro focused X-ray beam. The devices
under test were a 320 µm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded
to a 130 nm CMOS binary readout chip (ABC130) and a 320 µm thick full size radial (end-cap)
strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips
(ABCN-25).
A resolution better than the inter strip pitch of the 74.5 µm strips was achieved for both detectors.
The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond
pad regions.
Inter strip charge collection measurements indicate that the effective width of the strip on the
silicon sensors is determined by p-stop regions between the strips rather than the strip pitch
The significance of peroxisomes in secondary metabolite biosynthesis in filamentous fungi
Peroxisomes are ubiquitous organelles characterized by a protein-rich matrix surrounded by a single membrane. In filamentous fungi, peroxisomes are crucial for the primary metabolism of several unusual carbon sources used for growth (e.g. fatty acids), but increasing evidence is presented that emphasize the crucial role of these organelles in the formation of a variety of secondary metabolites. In filamentous fungi, peroxisomes also play a role in development and differentiation whereas specialized peroxisomes, the Woronin bodies, play a structural role in plugging septal pores. The biogenesis of peroxisomes in filamentous fungi involves the function of conserved PEX genes, as well as genes that are unique for these organisms. Peroxisomes are also subject to autophagic degradation, a process that involves ATG genes. The interplay between organelle biogenesis and degradation may serve a quality control function, thereby allowing a continuous rejuvenation of the organelle population in the cells
Around the Clock Observations of the Q0957+561 A,B Gravitationally Lensed Quasar II: Results for the second observing season
We report on an observing campaign in March 2001 to monitor the brightness of
the later arriving Q0957+561 B image in order to compare with the previously
published brightness observations of the (first arriving) A image. The 12
participating observatories provided 3543 image frames which we have analyzed
for brightness fluctuations. From our classical methods for time delay
determination, we find a 417.09 +/- 0.07 day time delay which should be free of
effects due to incomplete sampling. During the campaign period, the quasar
brightness was relatively constant and only small fluctuations were found; we
compare the structure function for the new data with structure function
estimates for the 1995--6 epoch, and show that the structure function is
statistically non-stationary. We also examine the data for any evidence of
correlated fluctuations at zero lag. We discuss the limits to our ability to
measure the cosmological time delay if the quasar's emitting surface is time
resolved, as seems likely.Comment: AAS LaTeX, 5 PostScript figure
Embedded pitch adapters: a high-yield interconnection solution for strip sensors
A proposal to fabricate large area strip sensors with integrated, or embedded, pitch adapters is presented for the End-cap part of the Inner Tracker in the ATLAS experiment. To implement the embedded pitch adapters, a second metal layer is used in the sensor fabrication, for signal routing to the ASICs. Sensors with different embedded pitch adapters have been fabricated in order to optimize the design and technology. Inter-strip capacitance, noise, pick-up, cross-talk, signal efficiency, and fabrication yield have been taken into account in their design and fabrication. Inter-strip capacitance tests taking into account all channel neighbors reveal the important differences between the various designs considered. These tests have been correlated with noise figures obtained in full assembled modules, showing that the tests performed on the bare sensors are a valid tool to estimate the final noise in the full module. The full modules have been subjected to test beam experiments in order to evaluate the incidence of cross-talk, pick-up, and signal loss. The detailed analysis shows no indication of cross-talk or pick-up as no additional hits can be observed in any channel not being hit by the beam above 170 mV threshold, and the signal in those channels is always below 1% of the signal recorded in the channel being hit, above 100 mV threshold. First results on irradiated mini-sensors with embedded pitch adapters do not show any change in the interstrip capacitance measurements with only the first neighbors connected
Charge collection and field profile studies of heavily irradiated strip sensors for the ATLAS inner tracker upgrade
The ATLAS group has evaluated the charge collection in silicon microstrip sensors irradiated up to a fluence of 1×1016 neq/cm2, exceeding the maximum of 1.6×1015 neq/cm2 expected for the strip tracker during the high luminosity LHC (HL-LHC) period including a safety factor of 2. The ATLAS12, n+-on-p type sensor, which is fabricated by Hamamatsu Photonics (HPK) on float zone (FZ) substrates, is the latest barrel sensor prototype. The charge collection from the irradiated 1×1 cm2 barrel test sensors has been evaluated systematically using penetrating β-rays and an Alibava readout system. The data obtained at different measurement sites are compared with each other and with the results obtained from the previous ATLAS07 design. The results are very consistent, in particular, when the deposit charge is normalized by the sensor's active thickness derived from the edge transient current technique (edge-TCT) measurements. The measurements obtained using β-rays are verified to be consistent with the measurements using an electron beam. The edge-TCT is also effective for evaluating the field profiles across the depth. The differences between the irradiated ATLAS07 and ATLAS12 samples have been examined along with the differences among the samples irradiated with different radiation sources: neutrons, protons, and pions. The studies of the bulk properties of the devices show that the devices can yield a sufficiently large signal for the expected fluence range in the HL-LHC, thereby acting as precision tracking sensors
Efflux in Fungi: La Pièce de Résistance
Pathogens must be able to overcome both host defenses and antimicrobial treatment in order to successfully infect and maintain colonization of the host. One way fungi accomplish this feat and overcome intercellular toxin accumulation is efflux pumps, in particular ATP-binding cassette transporters and transporters of the major facilitator superfamily. Members of these two superfamilies remove many toxic compounds by coupling transport with ATP hydrolysis or a proton gradient, respectively. Fungal genomes encode a plethora of members of these families of transporters compared to other organisms. In this review we discuss the role these two fungal superfamilies of transporters play in virulence and resistance to antifungal agents. These efflux transporters are responsible not only for export of compounds involved in pathogenesis such as secondary metabolites, but also export of host-derived antimicrobial compounds. In addition, we examine the current knowledge of these transporters in resistance of pathogens to clinically relevant antifungal agents
Study of surface properties of ATLAS12 strip sensors and their radiation resistance
A radiation hard nþ-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS
experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the “ATLAS
ITk Strip Sensor collaboration” and produced by Hamamatsu Photonics.
Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor
design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in “punchthrough
protection” (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry,
in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up
to 1 1016 neq/cm2
, by reactor neutron fluence of 1 1015 neq/cm2 and by gamma rays from 60Co up to
dose of 1 MGy. The main goal of the present study is to characterize the leakage current for microdischarge
breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance
and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that
the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that
different geometries of sensors do not influence their stability. The inter-strip isolation is a strong
function of irradiation fluence, however the sensor performance is acceptable in the expected range for
HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance
even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical
specification required before irradiation and no radiation-induced degradation was observed. A summary
of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites.
The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07
- …