We present VR magnification ratios of QSO 0957+561, which are inferred from
the GLITP light curves of Q0957+561A and new frames taken with the 2.56m Nordic
Optical Telescope about 14 months after the GLITP monitoring. From two
photometric approaches and a reasonable range for the time delay in the system
(415-430 days), we do not obtain achromatic optical continuum ratios, but
ratios depending on the wavelength. These new measurements are consistent with
differential extinction in the lens galaxy, the Lyman limit system, the damped
Ly-alpha system, or the host galaxy of the QSO. The possible values for the
differential extinction and the ratio of total to selective extinction in the V
band are reasonable. Moreover, crude probability arguments suggest that the ray
paths of the two components cross a similar dusty environment, including a
network of compact dust clouds and compact dust voids. As an alternative (in
fact, the usual interpretation of the old ratios), we also try to explain the
new ratios as caused by gravitational microlensing in the deflector. From
magnification maps for each of the gravitationally lensed images, using
different fractions of the surface mass density represented by the microlenses,
as well as different sizes and profiles of the V-band and R-band sources,
several synthetic distributions of V-band and R-band ratios are derived. In
some gravitational scenarios, there is an apparent disagreement between the
observed pair of ratios and the simulated distributions. However, several
microlensing pictures work well. To decide between either extinction, or
microlensing, or a mixed scenario (extinction + microlensing), new
observational and interpretation efforts are required.Comment: PS and PDF versions are created from the LaTeX file and 5 EPS
figures, two additional figues (Figs. 6 and 7) in JPEG format, scheduled for
the ApJ 20 January 2005 issu