369 research outputs found

    Acute hypotension due to platelet serotonin-induced chemoreflexes after intravenous injection of dextran sulfate in the rabbit

    Get PDF
    The hypotension and bradycardia observed after intravenous injection of dextran sulfate in rabbits was prevented by prior depletion of circulating platelets, but was not prevented by depletion of the third component of complement or Hageman factor. Dextran sulfate injection caused immediate thrombocytopenia with temporary localization of platelets within lungs. Morphological analysis revealed platelet aggregates in lung capillaries. The platelets had changed shape and were in the process of degranulating. Serotonin and histamine levels in blood increased approximately 5-fold and 7-fold, respectively, after dextran sulfate injection. The cardiovascular events following dextran sulfate injection were mimicked by intravenous serotonin but not by intravenous histamine injection, although a combination of serotonin and histamine reproduced the pattern of blood pressure changes better than did either agent alone. Quantification of platelets trapped in lung revealed that the potential release of serotonin from trapped platelets could account for the rise in plasma serotonin concentration and the hemodynamic changes observed. Both the dextran sulfate-induced cardiovascular effects and serotonin-induced hypotension were markedly diminished by cutting vagus and depressor nerves, and were virtually abolished by carotid ligation in addition to nerve section. These results support the concept that platelet activation within rabbit lungs may cause hypotension via serotonin-induced chemoreflexes

    Physiological responses of reared sea bream (Sparus aurata Linnaeus, 1758) to an Amyloodinium ocellatum outbreak

    Get PDF
    Amyloodiniosis represents a major bottleneck for semi-intensive aquaculture production in Southern Europe, causing extremely high mortalities. Amyloodinium ocellatum is a parasitic dinoflagellate that can infest almost all fish, crustacean and bivalves that live within its ecological range. Fish mortalities are usually attributed to anoxia, associated with serious gill hyperplasia, inflammation, haemorrhage and necrosis in heavy infestations; or with osmoregulatory impairment and secondary microbial infections due to severe epithelial damage in mild infestation. However, physiological information about the host responses to A.ocellatum infestation is scarce. In this work, we analysed the proteome of gilthead sea bream (Sparus aurata) plasma and relate it with haematological and immunological indicators, in order to enlighten the different physiological responses when exposed to an A.ocellatum outbreak. Using 2D-DIGE, immunological and haematological analysis and in response to the A.ocellatum contamination we have identified several proteins associated with acute-phase response, inflammation, lipid transport, homoeostasis, and osmoregulation, wound healing, neoplasia and iron transport. Overall, this preliminary study revealed that amyloodiniosis affects some fish functional pathways as revealed by the changes in the plasma proteome of S. aurata, and that the innate immunological system is not activated in the presence of the parasite.DIVERSIAQUA, Portugal [MAR2020]Fundacao para a Ciencia e Tecnologia [SFRH/BD/118601/2016]info:eu-repo/semantics/publishedVersio

    The Lipopolysaccharide from Capnocytophaga canimorsus Reveals an Unexpected Role of the Core-Oligosaccharide in MD-2 Binding

    Get PDF
    Capnocytophaga canimorsus is a usual member of dog's mouths flora that causes rare but dramatic human infections after dog bites. We determined the structure of C. canimorsus lipid A. The main features are that it is penta-acylated and composed of a “hybrid backbone” lacking the 4′ phosphate and having a 1 phosphoethanolamine (P-Etn) at 2-amino-2-deoxy-d-glucose (GlcN). C. canimorsus LPS was 100 fold less endotoxic than Escherichia coli LPS. Surprisingly, C. canimorsus lipid A was 20,000 fold less endotoxic than the C. canimorsus lipid A-core. This represents the first example in which the core-oligosaccharide dramatically increases endotoxicity of a low endotoxic lipid A. The binding to human myeloid differentiation factor 2 (MD-2) was dramatically increased upon presence of the LPS core on the lipid A, explaining the difference in endotoxicity. Interaction of MD-2, cluster of differentiation antigen 14 (CD14) or LPS-binding protein (LBP) with the negative charge in the 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) of the core might be needed to form the MD-2 – lipid A complex in case the 4′ phosphate is not present

    Epigenetic Modification of TLRs in Leukocytes Is Associated with Increased Susceptibility to Salmonella enteritidis in Chickens

    Get PDF
    Toll-like receptors (TLRs) signaling pathways are the first lines in defense against Salmonella enteritidis (S. enteritidis) infection but the molecular mechanism underlying susceptibility to S. enteritidis infection in chicken remains unclear. SPF chickens injected with S. enteritidis were partitioned into two groups, one consisted of those from Salmonella-susceptible chickens (died within 5 d after injection, n = 6), the other consisted of six Salmonella-resistant chickens that survived for 15 d after injection. The present study shows that the bacterial load in susceptible chickens was significantly higher than that in resistant chickens and TLR4, TLR2-1 and TLR21 expression was strongly diminished in the leukocytes of susceptible chickens compared with those of resistant chickens. The induction of expression of pro-inflammatory cytokine genes, IL-6 and IFN-β, was greatly enhanced in the resistant but not in susceptible chickens. Contrasting with the reduced expression of TLR genes, those of the zinc finger protein 493 (ZNF493) gene and Toll-interacting protein (TOLLIP) gene were enhanced in the susceptible chickens. Finally, the expression of TLR4 in peripheral blood mononuclear cells (PBMCs) infected in vitro with S. enteritidis increased significantly as a result of treatment with 5-Aza-2-deoxycytidine (5-Aza-dc) while either 5-Aza-dc or trichostatin A was effective in up-regulating the expression of TLR21 and TLR2-1. DNA methylation, in the predicted promoter region of TLR4 and TLR21 genes, and an exonic CpG island of the TLR2-1 gene was significantly higher in the susceptible chickens than in resistant chickens. Taken together, the results demonstrate that ZNF493-related epigenetic modification in leukocytes probably accounts for increased susceptibility to S. enteritidis in chickens by diminishing the expression and response of TLR4, TLR21 and TLR2-1

    Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation

    Get PDF
    Cisplatin is widely used for treating various solid tumors. However, this drug produces dose-limiting ototoxicity and nephrotoxicity, which significantly reduce the quality of life of cancer patients. While nephrotoxicity could be alleviated by diuresis, there is currently no approved treatment for hearing loss. Previous studies show that the ROS and inflammation are major contributors to cisplatin-induced hearing loss. In this study, we show that ROS trigger the inflammatory process in the cochlea by activating signal transducer and activator of transcription-1 (STAT1). Activation of STAT1 activation was dependent on ROS generation through NOX3 NADPH oxidase, knockdown of which by siRNA reduced STAT1 activation. Moreover, STAT1 siRNA protected against activation of p53, reduced apoptosis, reduced damage to OHCs and preserved hearing in rats. STAT1 siRNA attenuated the increase in inflammatory mediators, such as TNF-α, inhibition of which protected cells from cisplatin-mediated apoptosis. Finally, we showed that trans-tympanic administration of etanercept, a TNF-α antagonist, protected against OHC damage and cisplatin-induced hearing loss. These studies suggest that controlling inflammation by inhibition of STAT1-dependent pathways in the cochlea could serve as an effective approach to treat cisplatin ototoxicity and improve the overall quality of life for cancer patients

    Immunoediting role for major vault protein in apoptotic signaling induced by bacterial N-acyl homoserine lactones

    Get PDF
    The major vault protein (MVP) mediates diverse cellular responses, including cancer cell resistance to chemotherapy and protection against inflammatory responses to Pseudomonas aeruginosa. Here, we report the use of photoactive probes to identify MVP as a target of the N-(3-oxo-dodecanoyl) homoserine lactone (C12), a quorum sensing signal of certain proteobacteria including P. aeruginosa. A treatment of normal and cancer cells with C12 or other N-acyl homoserine lactones (AHLs) results in rapid translocation of MVP into lipid raft (LR) membrane fractions. Like AHLs, inflammatory stimuli also induce LR-localization of MVP, but the C12 stimulation reprograms (functionalizes) bioactivity of the plasma membrane by recruiting death receptors, their apoptotic adaptors, and caspase-8 into LR. These functionalized membranes control AHL-induced signaling processes, in that MVP adjusts the protein kinase p38 pathway to attenuate programmed cell death. Since MVP is the structural core of large particles termed vaults, our findings suggest a mechanism in which MVP vaults act as sentinels that fine-tune inflammation-activated processes such as apoptotic signaling mediated by immunosurveillance cytokines including tumor necrosis factor-related apoptosis inducing ligand (TRAIL).Bio-organic Synthesi

    Induction of IgG3 to LPS via Toll-Like Receptor 4 Co-Stimulation

    Get PDF
    B-cells integrate antigen-specific signals transduced via the B-cell receptor (BCR) and antigen non-specific co-stimulatory signals provided by cytokines and CD40 ligation in order to produce IgG antibodies. Toll-like receptors (TLRs) also provide co-stimulation, but the requirement for TLRs to generate T-cell independent and T-cell dependent antigen specific antibody responses is debated. Little is known about the role of B-cell expressed TLRs in inducing antigen-specific antibodies to antigens that also activate TLR signaling. We found that mice lacking functional TLR4 or its adaptor molecule MyD88 harbored significantly less IgG3 natural antibodies to LPS, and required higher amounts of LPS to induce anti-LPS IgG3. In vitro, BCR and TLR4 signaling synergized, lowering the threshold for production of T-cell independent IgG3 and IL-10. Moreover, BCR and TLR4 directly associate through the transmembrane domain of TLR4. Thus, in vivo, BCR/TLR synergism could facilitate the induction of IgG3 antibodies against microbial antigens that engage both innate and adaptive B-cell receptors. Vaccines might exploit BCR/TLR synergism to rapidly induce antigen-specific antibodies before significant T-cell responses arise

    End-Tagging of Ultra-Short Antimicrobial Peptides by W/F Stretches to Facilitate Bacterial Killing

    Get PDF
    BACKGROUND: Due to increasing resistance development among bacteria, antimicrobial peptides (AMPs), are receiving increased attention. Ideally, AMP should display high bactericidal potency, but low toxicity against (human) eukaryotic cells. Additionally, short and proteolytically stable AMPs are desired to maximize bioavailability and therapeutic versatility. METHODOLOGY AND PRINCIPAL FINDINGS: A facile approach is demonstrated for reaching high potency of ultra-short antimicrobal peptides through end-tagging with W and F stretches. Focusing on a peptide derived from kininogen, KNKGKKNGKH (KNK10) and truncations thereof, end-tagging resulted in enhanced bactericidal effect against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Through end-tagging, potency and salt resistance could be maintained down to 4-7 amino acids in the hydrophilic template peptide. Although tagging resulted in increased eukaryotic cell permeabilization at low ionic strength, the latter was insignificant at physiological ionic strength and in the presence of serum. Quantitatively, the most potent peptides investigated displayed bactericidal effects comparable to, or in excess of, that of the benchmark antimicrobial peptide LL-37. The higher bactericidal potency of the tagged peptides correlated to a higher degree of binding to bacteria, and resulting bacterial wall rupture. Analogously, tagging enhanced peptide-induced rupture of liposomes, particularly anionic ones. Additionally, end-tagging facilitated binding to bacterial lipopolysaccharide, both effects probably contributing to the selectivity displayed by these peptides between bacteria and eukaryotic cells. Importantly, W-tagging resulted in peptides with maintained stability against proteolytic degradation by human leukocyte elastase, as well as staphylococcal aureolysin and V8 proteinase. The biological relevance of these findings was demonstrated ex vivo for pig skin infected by S. aureus and E. coli. CONCLUSIONS/SIGNIFICANCE: End-tagging by hydrophobic amino acid stretches may be employed to enhance bactericidal potency also of ultra-short AMPs at maintained limited toxicity. The approach is of general applicability, and facilitates straightforward synthesis of hydrophobically modified AMPs without the need for post-peptide synthesis modifications
    corecore