452 research outputs found

    System and performance audit of surface ozone, carbon monoxide, methane, carbon dioxide and nitrous oxide at the Global GAW Station Izaña, Spain

    Get PDF
    The 7th system and performance audit by WCC-Empa at the global GAW station Izaña, which is run by the State Meteorological Agency of Spain (AEMET), was conducted from 15 to 21 May 2019 in agreement with the WMO/GAW quality assurance system (WMO, 2017).Activities of WCC-Empa and QA/SAC Switzerland are financially supported by MeteoSwiss and Empa

    Structural assessment of the gripper interlock of the DEMO breeding blanket transporter

    Get PDF
    The maintenance of the DEMO Breeding Blanket (BB) remotely is a crucial aspect in development of the DEMO power plant. It is a challenge due to the huge mass of the BB segment of about 180 tons. A new concept for the BB transporter has recently been developed. To properly grip and manipulate each BB segment, the BB transporter has been equipped with a gripper interlock. Due to the geometry of the BB and the vacuum vessel, the attachment point on the BB segment is not aligned with its center of gravity. Hence in addition to the vertical lifting load, large moments about the horizontal axes need to be reacted.The work discussed here concerns the structural analysis conducted on the gripper interlock; its structural integrity has been checked against the most severe load conditions that include also seismic loads according to the EN13001. Elastic analyses were performed using a finite element model in accordance with EN 13001-3-1:2012 + A2:2018, Cranes - General Design - Part 3-1: Limit States and proof competence of steel structure. The effect of the gap sizes at the contact surfaces between gripper interlock and BB after engagement as well as the effect of different friction coefficients on the sliding areas were assessed. The improvements of the design based on the structural analysis are presented, too

    Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland

    Get PDF
    A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) at the high-altitude site Jungfraujoch (JFJ). It is shown that 79 % of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential cloud condensation nuclei (defined as number of particles larger than 80 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO, and the height of the measurements above cloud base. The statistical model has a similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (northwest and southeast). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this statistical model is generally applicable to warm clouds under conditions where droplet formation is aerosol limited (i.e. at relatively high updraught velocities and/or relatively low aerosol number concentrations). A comparison between the statistical model and an established microphysical parametrization shows good agreement between the two and supports the conclusion that cloud droplet formation at the JFJ is predominantly controlled by the number concentration of aerosol particles

    Surveyor I Mission Report. Part III - Television Data

    Get PDF
    Surveyor I lunar photographs interpretation, and television subsyste

    TransCom N2O model inter-comparison - Part 2:Atmospheric inversion estimates of N2O emissions

    Get PDF
    This study examines N2O emission estimates from five different atmospheric inversion frameworks based on chemistry transport models (CTMs). The five frameworks differ in the choice of CTM, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation data set. The posterior modelled atmospheric N2O mole fractions are compared to observations to assess the performance of the inversions and to help diagnose problems in the modelled transport. Additionally, the mean emissions for 2006 to 2008 are compared in terms of the spatial distribution and seasonality. Overall, there is a good agreement among the inversions for the mean global total emission, which ranges from 16.1 to 18.7 TgN yr(-1) and is consistent with previous estimates. Ocean emissions represent between 31 and 38% of the global total compared to widely varying previous estimates of 24 to 38%. Emissions from the northern mid- to high latitudes are likely to be more important, with a consistent shift in emissions from the tropics and subtropics to the mid- to high latitudes in the Northern Hemisphere; the emission ratio for 0-30A degrees N to 30-90A degrees N ranges from 1.5 to 1.9 compared with 2.9 to 3.0 in previous estimates. The largest discrepancies across inversions are seen for the regions of South and East Asia and for tropical and South America owing to the poor observational constraint for these areas and to considerable differences in the modelled transport, especially inter-hemispheric exchange rates and tropical convective mixing. Estimates of the seasonal cycle in N2O emissions are also sensitive to errors in modelled stratosphere-to-troposphere transport in the tropics and southern extratropics. Overall, the results show a convergence in the global and regional emissions compared to previous independent studies
    corecore