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NATIONAL ADVISORY COMMITrEE FOR AERONAUTICS 

TECHNICAL NOTE NO . 1692 

DETERMINATION OF BENDING MOMENTS IN PRESSURE-LOADED RINGS 

OF ARBITRARY SHAPE WHEN ' DEFLECTIONS ARE CONSIDERED 

By F. R. Steinbacher and Hsu Lo 

SUMMARY 

An analytical method has been derived for determining bending­
moment distribution in rings of arbitrary shape under internal pressure 
loads, with the change of geometric shapes caused by the l oad being 
considered. For the purpose of clarity, the method developed was 
applied only to double-symmetrical shapes. A differential-integral 
e~uation has been derived for this purpose and its solution obtained 
in the form of a trigonometric series. 

Charts have been provided for two specific families of rings of 
various proportions and flexibilities. Tests conducted on rings of 
both families agree very well with the analytical calculations. For 
rings belonging to or close to these fami l ies, the bending-moment 
distribations and the deflections of the ring can be read directly 
from the curves. For rings of entirely different shapes, an average 
of 20 hours is necessary for the complete solution of the problem. 
Examples have been given to show the method of obtaining the curves. 

On comparing the present results with the results of solutions 
in which deflections have been neglected, it is seen that the bending 
moments previously com}Juted have always been much too conservative. 
The error introduced is considerable when the rings become more and 
more flexible. 

It is believed that by the use of this method curves can be 
drawn for a typical frame in a fuselage and from these curves the 
bending moments and deflections can be estimated for all similar 
frames. 

INTRODUCTION 

Numerous papers have been written regarding the design of the 
rings for monoco~ue fuselages. All of them were based on the assumption 
that the deflections of the ring' caused by the loads are so small that 
the internal bending moments and shear and axial loads will be unchanged 
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by any small change in the geometric shape of the ring. However, the 
error introduced by neglecting the change in the geometric shape 
becomes more and more important as the size of the airplane increases 
and more flexible rings are used to save weight. It is the object of 
this paper, therefore, to take into account deflections when calcu­
lating the bending moments in rings. 

The fact that the change of geometric shape has an important 
effect on the final bending-moment distribution in the rings can be 
illustrated by the beam-column analogy of an initially curved bar unde~ 
axial tension loads. For the bar as illustrated in figure 1, the 
initial bending moment is M = Py. If the bar is stiff and deflections 
are small enough to be neglected, the final bending moment is the same. 
But if the bar is flexible and the deflections are comparably large, 
the final bending moment becomes 

M p{y - 5) 

The difference between these two e~uations depends on the flexibility 
of the bar and can be considerable for flexible bars. 

In this paper two expressions for the bending-moment distribution 
are derived . The first expression is obtained by conSidering the 
action of the applied pressure and the final shape of the deflected 
ring. The second expression is obtained from the change of curvature 
of the rIng caused by the loads. If these two expressions are set 
e~ual, a differential- integral e~uation is obtained . The solution of 
this e~uation gives the radial deflections of the ring and the bending­
moment distribution. Another formula is derived from which the angular 
displacements can be determined when the radial deflections are known . 

The r i ngs discussed in this paper are assumed to be under only 
internal pressure . The method recommended herein can be extended to 
any system of external loads and is also applicable to rings of any 
shape although only shapes of double symmetry are discussed in the 
present paper. The following assumptions are made: 

(1) The rings have regular and smooth shapes of the type 
encountered in fuse19ge frames . 

(2) The thickness of the ring is small compared with its radius. 
Conse~uently the following formula can be used with an extremely small 
error. (See reference 1.) , . 

--_/ 



l 

NACA TN No. 1692 

where 

EI 

original curvature at certain point of ring 

final curvature at corresponding point of ring after ring 
is deflected 

internal bending moment built up because of deflections 
of ring 

bending flexibility 

(3) The ring is regarded as inextensible . 

(4) The deflections of the ring are defined by its radial 
deflections w and angular displacement ¢. Both w and ¢ are 
assumed to be large enough to be significant but small when compared 
with the radius of the ring. Therefore, all terms can be ne&lected 
containing s econd or higher powers or products of w/r or. ¢. Also 
all terms containing second or higher powers or products of the 

following items are neglected: dwjr d
2Wf !Ji and d

2
¢ where r 

d$ 'd¢2 'de' d9 2 ' 
and e are the polar coordinates of the ring. 

This work was conducted at the University of Michi~n under the 
sponsorship and with the financial assistance of the National Advisory 
Committee for Aeronautics. 

SYMBOLS 

a,b major and minor aXiS, respectively, of elliptical ring 

k' 

q 

:r,e 

s 

H 
R 

Fourier coefficients 

applied pressure load per unit l ength 

polar coordinates of original ring 

polar coordinates of deflected ring 

radius from origin to point A on original ring 

arc l ength along circumference of ring 

3 
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t 

t' 

nondimensional parameter (Ell Cla~ 

nondimensional parameter (EI/g;R~ 

NACA TN No. 1692 

u,v displacements of a point on ring parallel to x- and y-axis, 
respectively 

w radial deflection of ring 

~ Fourier coefficient for radial-deflection function 

EI bending flexibility of ring 

H height above x-axis of straight-line portion of rings of 
family II 

HA axial stress at point A on ring 

J polar moment of inertia of eCluivalent ring of elastic weight 
referred to original ring 

J l polar moment of inertia of eQuivalent ring of elastic weight 
referred to deflected ring 

Kmn certain constants 

M bending moment 

No bending moment in ring if change of geometric shape of ring 
is neglected 

MA bending moment at point A on ring 

Ma bending-moment expression derived from consideration of 
applied pressure load and final shape of deflected ring 

Mi bending-moment expression derived from consideration of 

s 

internal stress due to change of curvature of ring 

bending moment in ring at point defined by e 

certain constants 

radius of circular arc of rings of family II 

area of eCluivalent ring of elastic weight referred to 
original ring 

----------------------------------------- -~ 
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area of e~uivalent ring of elastic weight referred to 
deflected ring 

angle of rotation of cross section of ring 

radius of curvature at a point on original ring 

radius of curvature at point on deflected ring corresponding 
to Po 

angular displacement 

THEORETICAL ANALYSIS 

In the following analysis two expressions for the bending-moment 
distributions are derived- The first expression is obtained from 
consideration of the action of the applied pressure load on the final 
shape of the deflected ring - The second expression is obtained from 
consideration of the internal stress distribution due to change of 
curvature caused by loading of the ring - Hereinafter the bending 
moment corresponding to the first expression is designated by Ma 

and the bending moment corresponding to the second expression is 
designated by Mi - By e~uating the two expressions, a differential -

integral e~uation which represents the e~uilibrium condition of the 
final deflected ring is obtained- The solution of this differentia l­
integral e~uation determines the radial deflections of the ring and 
the bending-moment distribution - From the radial deflections, the 
angular displacements can be found from the nonextension theory, which 
is treated in detail in appendix A-

Expression for Ma 

5 

The moment Ma is the bending moment determined from consideration 

of the applied pressure load and the final deflected position of the 
ring - Before the expression for Ma is derived, a typical method 

which has been used to determine the bending moment in the ring without 
consideration of the change of geometrical shape of the ring is 
discussed-

Let the shape of the given ring be defirled by 

r r(e) 
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The ring is assumed to be symmetrical with respect to both the x- and 
y-axes. This simplification does not affect the validity of the method, 
which can be used for any shape. The intensity of the internal pressure 
on the ring is designated by ~. 

An imaginary cut is assumed at point A (see fig. 2) and t wo 
unknowns HA and MA are introduced, where HA is the axial force 
at A (positive if in tension) and MA is the bending moment ( positive 

if the o'ltside fiber is under compression) . There is no transverse 
shear at point A because of symmetry. (See reference 2.) The ring 
is now statically determined. 

The bending moment at any point C, defined by 9, as shown in 
figure 2, can be eocpressed as 

Substituting the expression 

into the foregOing e~uation, there results 

where 

2 A + Bre sin 9 + Cre 

C = ~ 
2 

The terms A, B, and C of e~uation (2) are independent of B. 

( 1) 

(2) 

.. . 
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The angle of rotation ~ of the cross section at C and the horizontal 
displacement u of point C, both relative to point A, are given by the 
e~uations : 

ac = rC 
Me de JA EI 

l CMe 
~ = -(r A - re sin ~ ds 

A EI 
( 4) 

Here C can be any point on the ring- If A' denotes the other end 
of the ring at the cut, e~uations (3) and (4) should also hold at 
point AI; and since there is no rotation nor horizontal displacement 
at the cut, the following relations are true: 

= - J 

J "Me ds 
EI = 0 

Mere sin e de 
EI 

o ( 6) 

The substitution of equation (1) into equations (5) and (6) yields 
the following equations: 

de + B 
EI 

2 
re ds 
EI 

o 

I _______ _____ ___J 
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Because of the property of double symmetry, 

Therefore 

J ds re sin e EI = 0 

J r 3 sin e ds = 0 e EI 

{ 
re2 d..s 

A = - .......L.I! :....-_...;::E::;:I=--- C 

f~ 
B = 0 

Or, with the following designation, 

J 

it follows that 

f 
2 re ds 
EI 

J A = --C 
S 

B = 0 

NACA TN No. 1692 

= 0 ( 8) 

(10) 

(11) 

} (12) 

---' 
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After substituting equation (12) into equation (1), the expression 
for the bending moment becomes 

:1.(r 2 _ ~) 
2\e S 

( 13) 

The expressions for J and S can be easily memorized because they 
are equivalent to the polar moment of inertia and area of the 
corresponding ring of elastic weight, respectively. (See appendix B 
for more details.) 

9 

It should be noticed that the bending moment given by equation (13) 
is a function of r. Any change of shape of the ring changes the values 
of r and consequently the bending moment also is different. All 
papers in the past have neglected this change and have called Me, 
given by equation (13), the final bending-moment distribution. It is 
shown later in the examples that the error is considerable for flexible 
rings. The derivation of equation (13), however, leads to the 
establishment of the expression for Ma , which is based on the final 

deflected shape of the ring rather than the original shape. 

The final position of the deflected ring is defined by rl = rl(e). 

Because of the assumption that the ring is inextensible, or in other 
wordS, ds = Constant, there immediately follows from equation (13) 
the following expression for Ma which is referred to the final 

deflected ring: 

(14) 

where 
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Equation (14) gives the expression for the bending-moment distribution 
from consideration of the applied pressure load and referred to the 
final deflected position of the ring. 

If the shape of the final deflected position of the ring is 
known, the bending-moment distribution can be obtained immediately 
from equation (14). The problem now is to find a method for deter­
mining the final deflected position of the ring, which, in turn, 
depends on the bending-moment distribution. 

Expression for Mi 

The moment Mi is the bending moment built up from the fiber 

stresses resulting from the changes of curvature of the ring when it 
is deflected. To set up the relationship existing between the bending 
moment Mi and the deflections is rather difficult, especially when 
deflections in both directions (two-dimensional) are to be considered. 
Timoshenko presents the derivation of a differential equation that 
gives the relationship between the radial deflections and the internal 
bending moment. (See reference 3.) The differential equation is 

where w is the radial deflection of the ring. This equation is based 
on circular rings and can be used only for rings that are nearly 
circular. In the follOwing paragraphs, a differential equation is 
derived which is more general than the one given by Timoshenko. 

Referring to figure 3, let the original shape of the ring be 
defined by r = r(e). An arbitrary point A, after loading, experiences 
an angular rotation ¢ and a radial deflection w = BD. Its new 
position is completely defined by ¢ and w, both of which are 
functions of e. The deflected shape of the ring is then represented 
by the equation 

r l = g(e l ) (16) 

where 

rl r + w } (17) 
e l = e + ¢ 

__ .J 
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From the calculus, the original curvature of the ring at point A is 
given by 

(18) 

and the ourvature of the deflected ring Cl at corresponding point D 

is given by 

( 19) 

Since 

d dE (r + w) 

:e (e + ¢) 
r I + w' 

1 + ¢ I ( 20) 

II II 
r + w 

(1 + ¢1)2 
r' + w ' ¢" 

(1+¢1)3 
(21) 

where r', w', and so forth indicate derivatives with respect to e, 
equation (19) becomes 
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2 " + 2~' + w'y (r + w) - (r w 

1 1 + p' 
(22) 

PI 

~r + 1
3 2 

2 
(r ~ + w') w) + 

~' + 

From the assumption that the ring is inextensible, there exist 
certain relationships between the angular displacements ¢ and the 
radial deflections w. These relationships, as given in e~uations (23) 
and (24), are derived from the nonextension theory. (See appendix A.) 

¢" 

¢, _ y. _ JL .r..:. 
r r r 

w(r l
) lO'l 

~\-;- + 7[1 -
r" 
r 

The foregoing relations, when applied to circular rings for 
which r = Constant and r' = 0, become 

¢, - y. 
r 

¢" = - JL 
r 

(24) 

(25) 

which are the e~uations given by Timoshenko (see reference 3, p. 208) 
f or inextensible circular rings. 
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Substituting e~uations (23) and (24) into e~uation (22) and 
simplifying (see appendix C for deta~ls), the following e~uation is 
obtained: 

1 
" r 

1 - - + 
r 

Now, from e~uation (18), 

Therefore 

w + w" 

2V (r ,)2 r 1 + -
r 

But as already mentioned (assumption (2 ) of the INTRODUCTION) the 
following e~uation is true: 

( 26) 

(27) 

13 

___ J 
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Therefore 

This equation expresses the relationship between the bending moment 
at a certain point on the ring and the radial deflection of the ring 
at the same point. 

Equation (28) is valid not only for rings but can be applied to 
any curved bars provided that the contour of the bar is regular and 
smooth, the deflections are not too large, and the bar is inextensible. 
Two extreme cases are given in the following paragraphs for 
illustration. 

First, for circular rings, r is constant and r' 0 . 
Equation (28) reduces to 

w" + W = ~r2 
EI 

which is exactly the formula given by Timoshenko. 

Next, consider a straight beam. 
infinity so that r = 00 and r' = 0 
Equation (28) can be simplified as 

+ 0 

Let the origin be chosen at 
at all points on the beam. 

M· r---

E~V 1 + 0 

For the x,y-coordinate system used in beam deflection, w = y, 
r de = dx. (See fig. 4.) Thus the foregoing equation becomes 

which is the familiar straight-beam formula. 

-- - -- ---~ 
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Differential-Integral E~uation 

E~uation (14) gives the expression for Ma which is determined 
by considering the applied pressure load and the final deflected 
position of the ring. E~uation (28) gives the expression for Mi. 

15 

It is determined by considering the change of curvature of the ring 
resulting from the loading. At the final deflected position of the 
ring, these two bending moments Me and ~ should be e~ual at every 
point on the ring; that is, 

Therefore, 

In this e~uation, rl and J l are referred to the final deflected 

posi tion. (See e~uation (14).) 

From e~uation (17), 

r l = r + w 

r 2 
1 = (r + w)2 r2E + 2~ + (;)J 

Therefore 

(29) 

(30) 

J r 2 dB ! r2G +2; + (;f] ~ (31) J l 
1 = 
EI 

Remembering the assumption that any term containing a power 
of wlr higher than second can be neglected, e~UBtions (30) and (31) 
become 
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and 

J l f r2 ds +/ 2wr ds 
EI EI 

J + f 2wr 
ds (33) = EI 

Putting these expressions into e~uation (29) yields 

Transferring all terms containing w to one side of the e~uation gives 

wr ds 
EI 

This is the final differential-integral e~uation with the radia l 
deflection w a s the only variable in the e~uation . The solution of 
this differential e~uation and a method to make i t more practica l for 
applications is discussed in the following section . 

Solution of Differential-Integral E~uation 

The solution of the foregoing differential-integral e~uation can 
be made by the following steps: 

( a) All the known functions and unknown functions are expanded 
into Fourier series, with known and unknown Fourier coefficients. . ' I 

I 
--' 
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(b) By comparing the Fourier coefficients of both sides of the 
e<luation, a system of simultaneous e<luationB is obtained. 

(c) The solution of the simultaneous e<luations gives the unknown 
Fourier coefficients. 

In carrying out these steps, rewrite e<luation (35), using the 
following relationship from the elementary calcul us: 

ds 

Equation (35) then becomes 

(36) 

In e<luation (37), let Fl , F2 , and F3 stand for the following 

functions: 

2 \ I (rr')2 
Fl ~I V 1 + 

(38) r3 V (r ,)2 - 1 + -
EI r 

17 



18 NACA TN No. 1692 

The f'unctions Fl , F2, and F3 are known for ~ given ring. The 
equation "becomes 

Since F l , F2 , and F3 are known functions, they can "be expanded 

into Fourier series with known coefficients. Therefore, 

L an cos ne 
n=O,2,4 ... 

L "bn cos ne 
u=O, 2,4 ... 

F3 L cn cos ne 
u=O, 2, 4 ... 

(40 ) 

where an' bn , and cn are known Fourier coefficients. For double 

symmetry, the case under study herein, n is a lways an even num"ber. 

Now let w be represented "by a Fourier serie s with unknown 
coefficients: 

w = L Am cos me 
In=O ,2,4 . . . 

( 41) 

where Am's are to be determined . From the fact that the ring is 
double - symmetrical and the externa l load system is also double­
symmetrical, the radial deflection w a lso is a double - symmetrical 
function. Therefore all m 's are even numbers . 
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Differentiating equation (41) twice gives 

" ~ w - ~ ( 42) 
In=O,2,4 ... 

Therefore, 

" ~ w +W= L-
ID.--o , 2, 4. . . 

The substitution of these relations into equation (37) yields 

L (1 - m2) ~ cos me - q L bn cos ne 
In=o,2,4... u=o,2,4 ... 

L ~cos me 
Ill;::O, 2, 4 ... 

+ ~ L sncos 
S n=O ,2,4 ... 

ne f L Azn. cos me 
Ill;::O, 2,4 ... 

L 
u=O, 2,4 ... 

= ~ ( L cn cos ne - ~ L an cos n~ 
2 n=O,2,4. .. n=O,2,4... / 

~cos ne de 

( 44) 

In order to facilitate the comparison of the coefficients on both 
sides, equation (44) is simplified. First, consider terms involving 
the integral sign in equation (44) as follows: 

! m=o,~ ... A,. C08 rrE n.(),~ ..• "n C08 nB de 

L 
m=O ,2,4 ... 1211 

Am 

° 
cos rri3 

2Aoao 11 + L 7tAmam 
Ill;::2,4 ... 

L Bn cos ne de 
u=O ,2,4 ... 
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and equation (44) becomes 

~ cos ne L ~ cos me 
m=0 ,2,4 ... 

+ ~ L an cos ne 0.1tAoao + L ltA~k'\ 
n=0,2,4... \: k=2,4... J 

~ ( L cn cos ne -
2 n=O ,2,4 ... 

~ L an cos n~ 
n=O ,2,4... ) 

( 46) 

The second step is to simplify the second term of the equation 
which contains the multiplication of two Fourier series. By actually 
carrying out the multiplication, 

L bn cos ne L Am cos me 
n=O , 2, 4. . . m=0 , 2, 4 . . . 

do + ~ cos 2e + d4 cos 4e + . . . 

= L ~ cos me 
m--{) , 2 , 4 . . . 

. . 

I 
-' 
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where 

• • • • • • • (I • • • • • • 

and equation (46) then becomes 

_J 
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or 

L L 
m=0, 2, 4 . .. k=2,4 ... 

(50 ) 

Equation (44) has been reduced to a more usable form in equation (50) . 

Now the Fourier coefficients on both sides of equation (50) can 
be compared. 

For m = 0, 

For m = 2, 

For m = 4, 

As many simultaneous equations as wanted can be formed. The" solution 
of m simultaneous equations gives m unknowns, Ao, ~, A4 .... 

In actual cases, as shown in the examples in appendix E, three or 
four simultaneous equations, which give three or four Am terms, are 
sufficiently accurate for ordinary rings. The following system is the 
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system of four simultaneous equations which give f our Fourier 
coefficients, Ao, ~, A4 ' and A6 · The f ollowi ng equations ar e 
obtained from equati ons (51) and (48) af t er collecting the terms: 

23 

(52) 
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With Am determined, the radial deflections can be obtained from 

equation ( 41) and the bending-moment distributions , from equation (14). 
The angular displacements ¢ can be determined by equations from the 
nonextension the0ry (appendix A) . 

Angular Displ acements 

When the radia l deflections ware known, the angular displace ­
ments ¢ can be found from the following equation, obtained from the 
nonextension theory (appendix A) . 

¢, - w 
r 

w ' r ' --
r r 

The integration of equation ( 53 ) gives the angular displacements ¢. 

¢ = -J !!: de -J~ ~ de r r r 

Before eV91uating the foregoing integration, the Fourier coeffi ­
cients en for the function l / r must be determined: 

1 
r 

L en cos ne 
n=O ,2,4 ... 

Since l / r is also a double - symmetrical function, the n's are even 
numbers only. Therefore, 

!!: 
r 

2___ Am cos me :> en cos ne 
m=O ,2 , 4 . . . n=O , 2 , 4 ... 

~ fn cos ne 
n=O ,2, 4 ... 

-------- --.--- -

-.: 
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where 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

and 

J ; dB " J (f 0 + f 2 C08 2e + f4 C08 4e + . • .) de 

fn sin ne 

It is also known that 

and 

x.:.L= -
r r 

= 

~ nen sin ne 
n=2,4 ... 

~ ~ sin me 
IIL--D , 2, 4. . . 

L. gn cos ne 
u=O, 2,4 ... 

L nen sin ne 
n=2,4 ... 

25 

(60 ) 
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where 

~ L 
Il=2,4 ... 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Therefore, 

J w' r' -- dB 
r r -J L ~ cos nB dB 

Il---Q ,2,4 ... 

~ sin n8 
n 

Substituting e~uations (58) and (62) into e~uation (54), the 
f ollowing form for ~ is obtained: 

¢ = -froB + L 
\ ll=2,4 ... 

f 
....,g sin nB 
n L ; sin nB' + C 

ll=2,4.. . / 

f - ~ ~ 
n n sin nB J + C 

where C i s the constant of integration. 

( 61) 

( 62) 

I 
--' 
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The present boundary conditions require that: 

¢ = 0 } 

and (2) at e =~, ¢ = 0 

(1) at e = 0, 

(64) 

For condition (1), equation (63) becomes 

¢(o) = 0 = 0 + ~ (0) + C 
Il;::::2, 4 ••• 

C = 0 

For condition (2), equation (63) becomes 

¢(~) = 0 ~o - ~) ~ - L (0 ) 
Il;::::2,4 ••• 

(;0 - ~)~ = 0 

And equation (63) becomes 

¢ L 
Il;::::2,4 •.. 

sin ne 
n 

which is the final form for the angular displacement ¢ . 
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The fact that fO - Bo must be zer o gives a good check on the 

values of Ao, ~, A6 . .. This condition should always be 

satisfied. A proof that this conditi on fO - Bo = 0 is a lways 

satisfied automatically is given as follows: From equation (5), 

wherea s from equation (28) 

Therefore , 

Since 

therefore 

" w + w 
r 

! 

1 
r 

M ds 
E1 ! " w+w 

2d (rr'_\2 r V 1 + ) 

1211 " = W + w de = 0 
o r 

L Gn cos nB 
ll=O, 2,4 ... 

ds 

w + w" L (1 - m2) Aw cos rre 
IlL--0 , 2 , 4 . . . 

L (1 - ~)Am cos rre L 
m:O, 2,4 ... n=O ,2,4 ... 

L hn cos ne 
n=O ,2,4 . .. 

en cos nB 

( 66) 

I 

I 
- I 

j 

I 
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"Where 

Substituting into e~uation (66) gives 

n=2~.. hn COB n~ de 

or 

Comparing e~uations (57), (61), and (67 ), it can be seen that 

110 = fO - 8'0 = 0 

o is a condition which must be satisfied -automatically-

Summary of Procedure 

In the foregoing sections, there has been developed an analytic 
method of finding the bending-moment distribution in double-symmetrical 
rings of arbitrary shapes, acted upon by internal pressure loads. The 
ring must have a regular and smooth contour, with its thickness 
negligible compared to the radius - For such rings the procedures to 
solve this problem can be summarized in the following steps: 

-- --~ 
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(1) Determine the Fourier coefficients of the following given 
functions: 

Fl = r2 Vl + (rr')2 = L an cos DB 
. EI u=0,2,4 ... 

F2 = ~~ Vl + (:,)2 L bn cos ne 
n=O ,2,4 •.. 

r4~ L cn cos DB F3 = EI 1 + -;- = 
u=0 ,2,4 ... 

(68) 

If the contour of the ring is expressed analytically in simple functions, 
the Fourier coefficients can be obtained by the usual method of 
integration. Otherwise, the coefficients must be obtained by graphical 
integration, which is explained in appendix D. 

(2) Perform the following integrations: 

(3) Calculate the following constants by substituting the results 
obtained from steps (1) and (2): 

l __ ~ __ 

b 
Ko2 = -~ + ~~ 2 S 

b4 
Ko4 = -2" + ~a4 

b6 
K06 = -"2 + -gaoa 6 

- ---~ 
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K20 = -b2 + 21ta2Bo 
S 

b4 Kz2 = -bO - "2 + ~a2 

b2 b6 
K24 = -2 - 2 + ~a4 

b4 bS 
~6 = -2 - "2 + ~a6 

K40 = -b4 + ~4Bo s 
b2 b6 

K42 = -2 - 2 + -§a4 ~ 

K44 = -bO - b2
S + -§a4a4 

b2 blO 1t 
K46 = - 2 - 2 + sa4 a6 

K60 = -b6 + 2;a6Bo 

b4 bS 
Kt)2 = -"2 - 2 + -§a6~ 

b2 b 10 Kt54 = -2" - 2 + -§a6a4 

b12 
K66 = -bO - 2 + ~6a6 

~ = ~~O -~) 

Q2 = ~G2 -~) 

Q4 = ~04 -~0 
Q6 = ~~6 - ~~ 

31 
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(4) Substitute the foregoing constant terms into the following 
system of simultaneous equations: 

(5) For a given pressure load q, the foregoing simultaneous 
equations can be solved for Ao,~, A4, and A6' 

(6) The radial deflections w are given by the following equation: 

w == Aa + ~ cos 28 + A4 cos 4e + A6 cos 6e 

(7) In order to find the angular displacements, the Fourier 
coefficient en of the following functions should be first determined: 

1 - = L 
n::O ,2,4 ... r 

Then values of An and en are substituted into the following 

equation to see if the condition fO - eo = 0 is satisfied. 
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(8) Knowing en and ~, determine fn and ~ as given in the 
following equation: 

(9) The angular displacements ¢ can be obtained from the 
following equation: 

¢ = - L 
n=2,4 ... 

f - ~ 
n sin n8 

n 

(74) 

(75) 

33 



34 NACA TN No. 1692 

(10) The moment distribution M is given by the following 
equation: 

~0 J 2rw - gfrw dB
) = - - + 

S S EI 

= ~r - ,1: + 2rw - g ~ ""0"0 + L <An~ S S 
n=2,4 ... 

(76) 

From the foregoing ~rocedures it can be seen that the main ~art of 
the solution of the ~roblem is the determination of the Fourier coeffi­
cients of several known functions. The rest of the ~rocedures are simply 
algebraic. On the average, it takes 20 hours to solve completely a 
problem. 

Preparation of Charts 

Following the foregoing procedures, solutions have been obtained 
for two specific families of rings. The first family consists of 
elliptical rings (fig. 5(a)) with various eccentricities. The second 
family consists of rings formed by two semicircles and t wo straight 
lines. (See fig. 5(b).) The ratio of the radius of the semicircle 
to the height of the straight-line portion is variable. All rings are 
assumed to be of constant EI. 

Charts and tables are ~rovided for both families of rings. The 
Fourier coefficients au, bu, cn , and en are given in tables 1 and 2 
and are also ~lotted in figures 6 to 13. Since both families of 
rings are of constant EI, the Fourier coefficients are obtained in 
terms of EI and the dimensions of the rings. 

Values of J 
in figures 14 and 
equation (70 ) the 
value of q and 

A2 , A4 , A6 .. 

and S are given in table 3 and also plotted 
15. When these values are substituted into 
simultaneous equations are obtained. For a given 
EI, the simultaneous equations can be solved for 

Figures 16 to 21 give the values of An for 

various ratios of q!EI. 

I 
-~ 
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Knowing ~, w, ¢, and M are obtained from equations (71), (75), 
and (76), respectively. The results are plotted in figures 22 to 42. 

Two examples are given in appendix E to illustrate the foregoing 
procedures in detail. 

TEar 

Test Specimens 

Two steel rings were tested, one elliptical and the other made 
up of two semicircles joined by two straight lines. (See fig. 5.) 

Test Apparatus and Procedures 

Figures 43 and 44 show the test setup. The ring was tested in a 
horizontal plane. Its circumference was divided into a number of 
segments with equal arc lengths. Wires, loaded equally, were attached 
to these points . Each wire was led through a pulley, connected to a 
fixed horizontal ring in such a manner that the pull on the test ring 
was normally outward at each pOint. (See fig. 45·) The concentrated 
loads were suffiCiently close so that they could be assumed as 
simulating pressure . 

In order to register the deflections of the ring, a wooden board 
was placed on top of the ring. The contour of the ring was traced on 
the board, with marks denoting the division points, before and after 
the ring was loaded, as shown in figure 46. The radial and angular 
displacements can be measured directly on the board. 

Bending moments were found by electrical strain-gage readings at 
t hree points on the ring. (See fig. 47.) The value of the effective EI 
used was determined from bending tests on a specimen cut from the ring. 

It might be mentioned that the test was at first tried with the 
aid of a pressure bag. The ring -was laid around the bag which was 
bl own up with compressed air. Special devices were used to adjust the 
pressure between the bag and ring so that the ring would be uniformly 
loaded. The test -was unsuccessful, however, since it was found that 
uniform loading could be obtained only through long and tedious work. 
(See fig. 48.) 



Test Results and Discussion 

The test results are plotted in figures 49 to 54, 
curves obtained by the method developed in this paper . 
between test data and calculated results is good . 

NACA TN No. 1692 

together with 
The agreement 

In figures 51 and 54 where bending-moment distributions along the 
circumferences of the rings are given, an additional curve is shown in 
each figl're. These added curves represent the bending-moment distri ­
bution when changes of geometric shapes of the rings caused by loading 
are neglected . The symbol Mo is used to designate the bending moment 

calculated without considering the deflections of the ring. The value 
of Mo can be fO'wnd from the following equation : 

It can be seen from figures 51 and 54 that the bending moment 
obtained without considering the change of geometric shape is too 
conservative . At the point of maximum bending moment the difference 
is quite large. 

CONCLUSIONS 

From an analytical method derived for the determination of bending­
moment distribution and radial and angul ar displacements of f l exible 
rings of arbitrary shape under internal pressure load, with the change 
of geometric shapes caused by the load being considered, the following 
concl usions can be made : 

1 . Results obtained by the present method showed good agreement 
with test data and proved that results obtained when change of geometric 
shape was not considered are inadequate for f l exibl e rings. 

2 . Although only rings with doub l e symmetry under internal pressure 
loads are discussed in the present work, the method can be extended to 
include rings of any shape under any system of external loads . 

University of Michigan 
Ann Arbor, Mich., October 17, 1946 

- --------

- , 

_J 
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APPENDIX A 

NOl~NSION THEORY 

The deflections of a loaded ring can be completely defined by the 
radial deflections VI and angular displ acements ¢, both of which are 
functions of e . (See fig. 3. ) The deflections w and ~ are 
independent of each other i f ther e a r e no additional conditions imposed 
on the ring. They are definitely related~ however~ if the ring is 
assumed to be inextensible. The nonextension theory gives the rel ation 
between w and ¢ f or such r i ngs . 

Timoshenko (reference 3, p . 208) has given the relation 
the radial deflections w and the tangential deflections v 
correspond to angul ar displacements ¢ in the present ca se) 
circular rings as follows: 

dv + W = 0 de 

For circular rings this can be written as 

where 

¢, 

between 
(which 

for 

(Al) 

(A2) 

This relation, however, is not quite a ccurate for rings of noncircular 
sh~pes. A relationship between w and ¢ which is more gener a l and 
can be applied to rings of any shape is deri ved by means of several 
steps as follows . 

Arc Length in Polar Coordinates 

Given a small element AB = ds on an arc C. 

OA = r 

OB = r + dr 
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With 0 as the center, OA as the radiUB, swing a circular arc which 
will cut OB at D. Then 

OD = OA -= r 

BD = dr 

and 

r dB ~ 1 + (~./ (A3) 

where the prime means derivative with respect to e. 

Increase of Arc Length Due to Angular Displacements 

When point A (fig. 55) is allowed an angular displacement ¢ 
and point B an angular displacement ¢ + d¢, with no radial deflections, 
the new position of the e l ement AB becomes EF. Since there is no 
change of radiUB, 

OE OA r 

OF OB = r + dr 

and the length of the arc EF is 

EF ( dB)EF = Vr2-(-; -:~¢) 2 + (dr) 2 

r de V (1 + ¢ r)2 + (:)2 

--- --- -- -----
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The increase of arc l ength due to the angul a r displ acement is (6ds)¢ 

where 

(ds)EF - (ds)AB 

Increas e of Arc Length Due to Radial Defl ections 

The element of arc EF is now a llowed to have radial defl ections. 
Point E moves radially to G and F, to H. (See fig. 56 .) 

GE w 

FH w + dw 

The arc length of GH is then 

(A6 ) 

and the increase of l ength of the arc due to radial deflections a lone 
is (Dds)w where 

-r de 

2 (rf + wf\2 
(l+¢f) +\r+w / 

2 (,)2 
(l+¢') + rr 

I 

~ __ ~ ____ .~J 
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E~uation for Deflections of an Inextensible Ring 

The nonextension theory re~uires that the total increase of the 
arc length due to both radial deflections and angular displacements 
should be zero. In other wordS, 

From e~uations (A5) and (A7) , 

(r + w)de 2 ~' ,)2 (1 + ¢') + r + w - r 
r + w 

or 

S~uaring both sides and dividing by r2 yields 

or 

(])2 2 (' ,)2 ~ +; (1 + ¢ ') + rr +: 
or 

__J 
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or 

~l - 2L .!L. -
r r 

1 + E 
r 

- 1 

Equation (A9) gives the relation between the angular displacements and 
the radial deflections for an inextensible ring . Equation (A9) is 
very general and can be used for rings of any shape. 

Simplifications 

Equation (A9) can be greatly simplified for rings, the 
deflections wand ¢ of which are not very large when compared 

with the radius of the ring. In other wordS, E «1 and ¢ « 1. 
, r 

Also, it must be assumed that ~« 1 and ¢' « 1. Then any term 
r 

of power higher than two or products of the foregoing items can be 
neglected. Equation (A9) becomes 

or 

rI. w r' w' 1 + 2'f' + 2 - = 1 - 2 - -
r r r 

or 

- E - L. .!L. 
r r r 

Differentiate equation (A10) once as fol l ows: 

wilL 
r r 

(A10) 

(All) 

Equations (A10 ) and (All) are the relationship between ¢ and w for 
inextensible rings. 

41 
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For circular rings for which r Constant and r' 0 , 
equations (AIO) and (All) reduce to 

¢' -~ 
r 

, 
¢"=_:L 

r 

which are exactly the relations given by Timoshenko in reference 3. 

I 
_ _____ J 



NACA TN No. 1692 

APPENDIX B 

EQUIVALENT RINGS OF ELASl'IC WEIGHT 

The term "elastic weight " has been used by Mohr (reference 4). 
It is designated by "dW " and is defined as 

(Bl) 

The e~uivalent ring of elastic weight is then defined as the ring, 
the median of which has a shape which is exactly the same as the shape 
of the original ring, but the thicbless tl of the e~uivalent ring 
is l/EI, where EI is the bending flexibility of the original ring. 

The cross-sectional area of the e~uivalent ring then is 

(B2) 

and the polar moment of inertia of the e~uivalent ring is 

When e~uations (B2) and (B3) are compared with e~uation (11), it is 
seen that 

S = A 

J = I 

of the e~uivalent ring of elastic weight. 

43 
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APPENDIX C 

DETAILED DERIVATION OF EQUATION (27) 

The detai l s of deriving equation (27) are as follows . Start with 
equation (22), where 

2 
(r + w) - (r + w) r + w _ r + w cj" + 2 r + w, 

[

" " I I J ~ I )2 
(1+¢1 )2 (1 +¢1) 3 l+¢ 

~ ~
3~ ( )2 (r' + W,)2 r+w + ¢' 1 + 

[

r" wIt r' w' ~' wj2 
(1 + !!.)2 _ (1 +!!.\ r + r -r + -r ¢ " 2 - r + -r 
\ r \ r) (1 + ¢ ,) 2 (1 + ¢ ,) 3 + 1 + ¢' 

= ------------=~------------------~---------

1 (F; + ~')2 3/2 

(1 + ;f~l d' 

By neglecting all terms containing second or higher power or 
products of the deflection items and using the binomial theorem, . 
the following r e l ations are obtained: 

" II 
.!:..- + L 
r r 

(1 + ¢ ')2 

r' w' -+-
r r ¢" = 

( 1 + ¢ 1) 3 

" _ 2p'L-
r 

( Cl ) 

- I 



I 
I 

I 
L __ 

~ ' )2 r + w 2 2 -; -;; 0r ') w' r' rI. r Qr ') = - +2- - - 2'f' -
l+¢' r r r r 

~ 
r ,)2 r + w 2 2 2 

_1 _ r r == (r ') _ 2 :1. (T ') + 2!L. L - 2¢ r (r ') 
1 + ¢ r r r \r r r r 

Substitution of e~uation (C2) into e~uation (Cl) yields 

~ = (1 + 2¥) - (1 + ¥)(r; + ~ - ~'~ -¢"r~} 2 ~~f + 2~ ~ - 2¢ '(r;f] 
Pl \, ~ 3/2 

r(l + ~f Ll + (rr')2 - 2;(rr')2 + 2:' ~' - 2¢ '(rr')J 

(C2 ) 

-- 1 

~ 
;t> 

~ 
~ 

f--' 
0\ 

'iB 

+:­
\Jl 

I 

I 
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The foregoing e~uation can be further simplified by using 
e~uations (A10) and (All). The numerator of e~uation (C2) becomes 

Numerator r;' + 2~Sl + !!.(2 - L) + 4.!L. L _ w" 
r\: r r r r 

~ " w r - -2-
r r (

r ,)2- , w' [r' r" (r ,)3l 
- 4 -;- J - -;-~r -;- - 4 -;- J 

= t -r;' + 2~;f] + ;~ - * + 5(rSJ 
6(rr'fJ + W;Il (rJ] 

and the denominator becomes 

Denominator 

Therefore 

L __ _ 

r~ + ;)3 t + (rr'Y -2;~J 
wQr ,)2 W ' ~r ')~ 3/2 + 2- - +2--
r r r r 

Numerator 

w' r' +2--
r r 

J
3/2 3/2 

(r)2 ( w'r t
) - 1+2--r r r 

(C4) 

I 
-) 
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or 

w ) ( w' r' ) - 3~ - . . . l - 3-;- -;- - . . . 

But from equation (l8) 

II (,)2 
l l-~+2~ 

-Po = r~ + (rr9J372 
or 

II (,)2 
l - rr + 2\rr 

Therefore 

or 

r~~ - :0) V 1 + (~J = -~ + w;) 
or 

1 1 w + W
U 

- - - - - --;::=========:::;: 
Pl Po 2V (r ,)2 r l + -

r 

47 
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APPENDIX D 

GRAPHICAL tOOHOD TO DEI'ERMINE THE FOURIER 

For rings, the contours of which carmot 
as simple functions, the following procedure 
<luick evaluation of the Fourier coefficients 

be expressed anal ytically 
is a graphical method f or 
Bu, bn' cn ' and en of 

the following functions : 

L 

Bu cos nB 
n=O ,2, 4 ... 

~ bn cos nB 
n=0,2,4 . . . 

~ en ~o s nB 
n=0 ,2,4 ... 

en cos nB 
n=O,2,4 ... 

Table 4 is filled in first . Then rows 7 to 18 are plotted 
against the arc length s, and rows 19 to 22 are plotted against B. 
Let E

7
, E8' . . . E22 r epr esent the area under the corresponding 

curves . The Fourier coefficients are 

aO ~7 bO = ~ll Co = ~15 eO ~19 

82 l±E8 
11 

b2 l±E12 
11 

c2 ~16 
"It 

e2 ~20 
11 

84 ~9 b4 ~13 c4 ~17 e4 ~21 
11 

I 

b6 = ~14 ~8 ~22 96 ~lO c6 e6 
11 11 1 
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APPENDIX E 

EXAMPLES 

Two examples are given in this appendix. A method of checking 
the final results is also presented at the end of this appendix. 

Example 1 

Given an elliptical ring with the following data (see fig. 5(a)): 
a = 30, b = 25.11, EI = 81,000, and q = 10. 

With the coordinate system shown in figure 5(a), the equation of 
the ellipse can be expressed either by 

or by 

where 

2 

1 - (~) 

The general procedures given under Summary of Procedure are 
followed. 

(1) In order to determine the Fourier coefficients an' bn , 

and cn of the following functions 

L an cos nB 
0,2,4 

L cn cos nB 
0 ,2,4 

(El) 

(E2) 

(E3) 

49 
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the following formulas can be used: 

1rr
/

2 4~ cn = ( 4 80 ) L 1 + (r ') cos ne de 
rr 1 + n 0 EI r 

-where 

if n = 0 

if nf O 

Performing the integration gives 

ao = 0 .84334(~~) 

~ = -0 .15059(~~) 

84 = 0 . 00689(~~) 

bO = 0 '77600(;~) 

b2 = -0 .20669(~~) 

b4 = O . 01703(~~) 

__________ _ __ ..1 
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Co 0'7l6~;~) 

c2 -0 .25300(~~) 

c4 = 0 .028l<~~) 

(2) In order to evaluate J and S the following integration 
should be performed: 

12
1{ \~ 

S = 0 :r V 1 + (~) dB 

Substituting in these equations gives 

Therefore 

J 
S 

2 0.84335a 

51 
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(3) When the values of ~,bn' cn' J, and S are substituted 
into e~uation (69), the following constants are obtained: 

KOo = -O.00306(;~) 

K02 = O.03433(;~) 

KQ4 = -O.00536(~~) 

K20 = O.06867(~~) 

K22 = -O'77220(~~) 

~4 = 0 .l0278(;~) 

K40 = -O.Ol067~~) 

K42 = O.l0278(~~) 

K44 = O .l033~~) 

~ = O . 00280~) 

~ = -O.0 6300(~~) 

Q4 = O .Oll18(;~) 

) 
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(4) When these constants are substituted into e~uation (70), the 
following e~uations are obtained: 

Ao(t - 0.00306 ) + ~(0.03433) + A4(-0.00536 ) = 0.0028oa 

Ao(0.06867) + ~(-3t - 0·77221) + A4(0.10278) = -0 .06300a 

Av(-0.01067) + A2(0 .10278) + A4(-15t + 0.10338) = 0 .01118a (E4) 

where 

The parameter t is nondimensional and is a me8sure of the flexibility 
of the ring. In the present example t = 0 . 3 . 

(5) Solving the preceding simultaneous e~uations gives 

Ao == 0 .00503a 

(6) The radial deflection w is then given by the following 
e<luation : 

w = Ao + ~ cos 2B + A4 cos 4e 

= (0.00503 + 0 .03778 cos 2B - 0 .00167 cos 4B)a (E5) 

The values of w/a for various values of the angl e B are given in 
table 5 and also plotted in figure 24. 



---~- ~-
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(7) The Fourier coefficient en can be obtained from the 
following formula: 

4 1 11(/2 
en = ( ) - cos ne de 

1( 1 + BOn 0 r 

Performing the integration gives 

eO = 1.02gJ2 
a 

e2 = 0 .02752 
a 

e4 = -0.00217 
a 

Substituting Au and en into equation (73) gives 

Therefore the results are checked. 

(8) The coefficients fn and Bn are obtained from equation (74) 
as follows: 

f2 = 0.04188 

f4 = -0.00001 

~ = -0.00100 

g4 = -0.00737 

- I 
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(9) The angular displacement ¢ is, therefore, 

¢ = -~(r2 - ~) sin 28 - ~(f4 - g4) sin 48 

= -0.02144 sin 28 - 0.00184 sin 48 (E6) 

Values of ¢ are given in table 6 and are also plotted in figure 31. 

(10·) Finally equation (76) is used to calculate the bending­
moment distribution. 

Since 

and the bending-moment distribution if the change of geometric shape 
of ring is neglected is 

the bending-moment distribution M can be expressed as 

M = Mo + qrw - 0.00151qa2 

or 

'1:2 = ~2 + (~; - 0 . 0015~ 

Values of Mo /qa2 and M /'182 are given in table 7; M fqa2 is also 

plotted in figure 38. The last term of equation (E7) is evidently the 
correction needed when the change of geometric shape is considered. In 
this particular case the correction term amounts t o about 37 percent at 
the point of maxim~ bending moment. 
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Example 2 

Given a ring as shown in figure 5(b), with the following data : 
R = 15, H = 9, ~ = 10, and EI = 84,375 · 

With the coordinate system as shown in figure 5 (b ), the e~uations 
for the ring outline are 

(E8) 
r 1 -=--
R sin e 

where 

k' = !! 
R 

The procedure as followed for exampl e 1 is a l s o used for exampl e 2 
by means of the following steps: 

(1) The Fourier coefficients are 

ao 1.85526(~~) 

~ = O. 78339(~~) 

a4 -0 . 09307(~~) 

bO = 2 .55l70(~~) 
b2 1.57561(~~) 

b4 = -0 . 02956(~~) 



NACA TN No. l692 

Co = 3.58542(~) . EI 

c2 = 2.83l47~~) 

c4 = 0 .l5947~~) 

(2) The values of J and S are 

(3) The constants are 

J = l6.0332(~~) 

S = 8.6832(~) 

!I. = 1.8464R2 
S 

Koo= -0 . 06l0\~~) 

Ko2= -0 .26l92(~~) 

Ko4= -0 . 04769(~~) 

K20 = -0 .52399(~~) 

K22 = -2. 3l48~~) 

K24 = -O .814l7(~~) 

K40 = -O.09538~;) 
K42= -O.814l7(R

3
) 

. EI 

K44 = -2.54857(~~) 

57 
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~ ~ 0.07993(~~) 

Q2 ~ 0 .69251(~~) 

Q4 ~ 0.16565(~~) 
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(4) Introduce the nondimensional parameter t' = Ei R~ which is 

equal to 2 .5 for the present e:x:ample. The folbwing simultaneous 
equations are obtained : 

-0 .52394Ao - 9 · 81488~ - 0.81417A4 = 0.6925lR 

(5) The solution of the foregoing equations is 

Ao = 0.02503R 

~ = -Q .07166R 

A4 :=: -0.00274R 

(6) The radial deflection w is 

w = (0.02503 - 0.07166 cos 28 - 0.00274 cos 4e)R (E9) 

Values of w/R are given in table 8 and also plotted against 8 in 
figure 28 . 

. I 
I 

-, I 
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(7) The Fourier coefficients au are obtained as 

eo = 0 .78538 
R 

-o.l8829 
e2 = R 

e4 = 0.03070 
R 

In order to check the results, e~uation (73) is used. 

fO - 80 = -0.00005 = 0 

(8) The coefficients fn and Bn are then evaluated. 

f2 = -0 .06l73 

f4 = 0.00537 

~ = -0.00672 

(9) The angular displacements can be expressed by the following 
e~uation: 

¢ = 0 .0275l sin 28 - 0 .00809 sin 48 

Values of ¢ are given in table 9 and also plotted in figure 35· 

(lO) The bending-moment distribution is then given by the 
following e~uation : 

(E9) 

(ElO) 

59 
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Values of M/ClR2 and Mo/g?2 are given in table lO and also plotted 

in figure 57 for comparison. The maximum error introduced by 
neglecting the change of geometric shape of the ring is about 35 percent. 

Method of Checking 

A method of checking the final bending moment and displacements 
is given. Example 2 is used for illustration. 

Assume the results obtained from example 2 to be correct. Then 

w = (0.02503 - 0.07166 cos 2e - 0.00274 cos 4e)R 

¢ 0.02751 sin 2e - 0.00809 sin 4e 

Using the bending-moment expression, the deflections u and v, 
parallel to the x- and y-axiS, respectively, can be determined from 
the original shape of the ring. The deflected ring defined by the 
displacements u and v should agree with the deflected ring defined 
by w and ¢. 

The eCluations for the determination of u and v are 

ue = 1e 
Me.ra, cos a, dB + re cos e re 

Ma, dB 
o EI Jo EI 

sin e 16 

Me. ds 
1f.!2 EI 

(Ell) 

(El2) 

Values of u and v, obtained from eCluations (Ell) and (El2), 
are given in table II and are also plotted in figure 58, together with 
the deflections defined by w and ¢. The agreement is very good. 
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TABLE l . - FOURIER COEFFICIENTS tin, bn' en, AND au FOR 

VARIOUS VALUES OF PARAMETER k 

~ami1Y I, elliptical rings] 

~ = 1 _ (~)2 0 O.l 0.2 0·3 0.4 

ao~I/a~ l.OOOOO 0·94934 0.89722 0.84334 0·78735 

a2(EI/a2) 0 -{) .05002 -0.lOOl6 -0.15059 -0.20160 

a4(EI/a~ 0 0.00066 0.00282 0.00689 0.01354 

bo (EI/a3) l.OOOOO 0·92514 0.85052 o .7760l o ·70l46 

b2 (EI/a3) 0 -0.07308 -0.14210 -0.20669 -0.26638 

b4~I/a3) 0 0.00177 0.00731 0.Ol703 0.03151 

co(El/a~ 1.00000 0·90187 0.80749 0·71684 0.62988 

~(El/a~ 0 -0.09493 -0.17944 -{) .25300 -0·31494 

c4(El/a~ 0 0.00313 0.01251 0.02817 0.05014 

-

8 0 (a) 1.00000 1.02722 1.05984 1 .09979 1.15013 

e2(a) 0 0.02705 0.05899 0.09752 0.14519 

e4(a) 0 -0 .00018 -{) .00082 -{) .00217 -0.00470 

1 , I 

I 

I 

\ 

\ 

\ 

I 

I 
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TABLE 2. - FOURIER COEFFICIENTS Bn, bn , cn ' AND en FOR 

VARIOUS v.AllJES OF PARAMETER k' 

k' = Ji 
R 

aoCEI/R2) 

a2~I/R~ 

a4~I/R2) 

bO(EI/R3) 

b2(EI/R3) 

b4(EI/R~ 

CO(EI/R~ 

C2(EI!R4) 

C4~I/R~ 

eO(R) 

e2 (R) 

e4(R) 

[!a.milY II, rings formed by two semicircles 
and two straight lines] 

0 0.2 0.4 

1.00000 1.26456 1·54962 

0 0.19985 0.46057 

0 -0.03398 -0.06703 

1.00000 1.42356 1·93754 

0 0·33803 0 .85649 

0 -0.04495 -0.06725 

1.00000 1·6)789 2.45013 

0 0·50563 1.41205 

0 -0.05622 -0.03567 

1.00000 0.89756 0.83083 

0 -0.07617 -0.13812 

0 0.016)5 0.02677 

0.6 

1.85526 

0·78339 

-0.09307 

2·55170 

1·57561 

-0.02956 

3·58542 

2.83147 

0.15947 

0·78538 

-0.18829 

0.03070 



TABLE 3. - VALUES OF J Al'ifD S 

Family I 

k2 = 1 _ (~)2 0 0.1 0.2 

J(EI/a3) 6 .2832 5·81282 5·34397 

S{EI/a) 6.2832 6.12302 5·95614 

~(a~) 1.0000 0·94933 0.89722 

Family II 

k' = g 0 0.2 
R 

J(EI/R3) 6.2832 8·9452 

S{EIjR) 6.2832 7·0832 

~(:2) 1.0000 1.2628 

I 
L _ 

0·3 0.4 

4.87580 4.40741 

5·78147 5·59762 

0.84335 0·78737 

0.4 0.6 

12.1736 16.0332 

7·8832 8.6832 

1·5442 1.8464 

~ 

t 

I 

~ 

~ 
~ 
~ 
~ . 
...... 
0'\ 
\0 
f\) 
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TABLE 4. - GRAPHICAL ME.'l'HOD TO IlETERMINE 'l'I!E FOURIER 

@ee appendix D.J 

Row I tem Procedure Res ult s a t -

1 8 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 

2 r 

3 EI 

4 coe 28 

5 COB 48 

6 COB 6e 

7 r./EI (2) /( 3 ) 

8 (r /EI ) COB 28 (7) x (4) 

9 (r/EI ) COB 4e (7 ) X ( 5 ) 

10 ( r/EI ) COB 6e (7 ) X ( 6) 

11 r'2/EI (2) x (7 ) 

12 (r2!f;r) COB 28 (11) x (4 ) 

13 (z2- /n) COB 48 (n ) x ( 5) 

14 (r 2/n) COB 6e (11) x ( 6) 

15 r 3/EI (2) x (il) 

16 ( r 3/El) COB 28 (15) x (4) 

17 (r3/EI) COB 48 (15) x ( 5) 

18 (r 3/EI ) CO B 6e (15) x ( 6) 

19 l / r 1/( 2 ) 

20 ( l / r ) COB 28 (19) x ( 4) 

21 ( l / r ) COB 48 (19) x ( 5) 

22 ( l/r) COB 6e (19 ) x ( 6) 

23 Arc l ength, S 

l __ ~ ___ J 
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TABLE 5. - RADIAL DEFLECTIONS w/a .P!r VARIOUS VAllJES OF e 

~ami1Y 1. ~:: 0·3; t = 0.3J 

2 3 4 5 6 7 

cos 2e cos 4e 0.03778 x (2) -0.00167 x (3) 0.00503 w/a 
(4) + (5) + (6) 

1.00000 1.00000 0.03778 -0.00167 0.00503 0.04114 

·93969 ·76604 .03550 -.00128 .00503 .03925 

·76604 .17365 .02894 - .00029 .00503 .03368 

·50000 -·50000 .01889 .00084 .00503 .02476 

.17365 -·93969 .00656 .00157 .00503 .01316 

- .17365 -·93969 - .00656 .00157 .00503 .00004 

-·50000 -·50000 - .01889 .00084 .00503 - .01302 

- ·76604 .17365 - .02894 - .00029 .00503 - .02420 

-·93969 ·76604 - .03550 - .00128 .00503 - .03175 

-1.00000 1.00000 -.03778 - .00167 .00503 -.03442 

~ 

- ----- --- ---- ---- --- --- --- - -----
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TABLE 6.- ANGUlAR DISPIACEMENTS ¢ AT VARIOUS VALUES OF e 

~amilY I. ~ = 0·3; t = 0.3J 

, 

2 3 4 5 6 7 

sin 2e sin 4e -0.02144 x (2) -0.00184 x (3) ¢ = (4) + (5) ¢ 
(rad. ) (deg) I 

I 

0 0 0 0 0 i 

·34202 .64279 -.00733 - .00118 - .00851 - .49 

.64279 ·98481 - .01378 - .00181 - .01559 -.89 I 

.86603 .86603 - .01857 - .00159 - .02016 -1.16 

·98481 ·34202 - .02111 - .00063 - .02174 -1.25 I 

·98481 -·34202 -.02111 .00063 - .02048 -1.17 

.86603 - .86603 - .01857 .00159 - .01698 -·97 

.64279 -·98481 -.01378 .00181 -.01197 -.69 

·34202 - .64279 - .00733 .00118 - .00615 -·35 

0 0 0 0 0 I 

~ 

~ 
~ 
~ 
!2l o . 
I-' 

$' 
I\) 

0'\ 
-.J 

'I 
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1 

e 
( de g) 

o 
10 

20 

30 

40 

50 

60 

70 

80 

~ 

2 

r 
a 

0 .83666 

.84040 

.85173 

.86989 

.89394 

·92172 

·95038 

·97584 

·99365 

1.00000 
I 

3 

(;)2 

0 ·70000 

·70639 

·72545 

·75675 

·79~4 

.84956 

·~322 

·95226 

·98725 

1.00000 

TABLE 7. - BENDING-MOlYfENT msrRIIDl'ION 

~amily 1. ~ = 0 ·3; t = 0·3; ~ a~ = 0 .84335J 

4 

(r\2 J 1 
\8.) - s 82 

= (3) - 0 .84335 

-0 .14335 

-.13696 

- .117~ 

- .08660 

-.04431 

.00621 

.05987 

.10891 

.143~ 

.15665 

5 

Mol 
q 8 2 

- 1:(4) - 2 

-0.07168 

- .06848 

-.05895 

- .04330 

- .02216 

.00310 

.02994 

.05446 

.07195 

.07833 

6 

~ 
8 

from table 5 

0 .04114 

.03925 

.03368 

.02476 

.01316 

.00004 

- .01302 

- .02420 

- .03175 

-.03442 

7 

:!!.!: 
8 8 

0 .03442 

.03299 

.02869 

.02154 

.01176 

.00004 

- .01237 

- .02362 

- .03155 

- .03442 

8 

M 1 
<l 8 2 

= (5) + (7) - 0.00151 

-{) .03877 

- .03750 

- .03177 

-.02330 

- .01189 

- .00163 

.01606 

.02933 

.03889 

.04240 

~ 

I , 

0\ 
CP 

~ 
~ 
~ o . 
I--' 
0\ 
\.0 
f\) 
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TABLE 8. - RADIAL DEFLECTIONS "W /R AT VARIOUS VAllJES OF e 

(!a.mily II. k' = 0.6; t' = 2.5J 

, 

2 3 4 5 6 7 

cos 2e COB 4e -0.07166 x (2) -0.00274x(3) 0.02503 ~ = (4) + (5) + (6) 

1.00000 1.00000 -0.07166 -0.00274 0.02503 -0.04937 

·93969 ·76604 -.06734 - .00210 02503 -.04441 

·76604 .17365 -.05489 - .00048 02503 -.03034 

·50000 - ·50000 -.03583 .00137 .02503 - .01217 

.17365 -·93969 - .01244 .00257 .02503 .01516 

-.17365 -·93969 .01244 .00257 .02503 .04004 

- ·50000 -·50000 .03583 .00137 .02503 .06223 

- ·76604 .17365 .05489 - .00048 .02503 .07944 

- ·93969 ·76604 .06734 - .00210 .02503 .09027 

-1.00000 1.00000 .07166 - .00274 .02503 .09395 

~ 

--------

• , 

~ 
&; 

~ 
~ . 
f-' 

$' 
f\) 

$' 
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TABLE 9. - ANGULAR DISPLACEMENTS ¢ AT VARIOUS VALUES OF e 

~amily II. k I = 0.6; t I = 2·5 J 

2 3 4 5 6 7 

sin 28 sin 48 0.02751 x (2) -0.00809 x (3) ¢ = (4) + (5) ¢ 
(rad. ) (deg) 

0 0 0 0 0 0 

·34202 .64279 .00941 - .00520 .00421 .24 

.64279 ·98481 .01768 - .00797 .00971 ·56 

.86w3 .86603 .02382 - .00701 .01681 ·96 

·98481 ·34202 .02709 - .00277 .02432 1·39 

·98481 - ·34202 .02709 .00277 .02986 1.71 

.86w3 - .86603 .02382 .00701 .03083 1·77 

.64279 -·98481 .01768 .00797 .02565 1.47 

·34202 - .64279 .00941 .00520 .01461 .84 

0 0 0 0 0 0 

~ 

.. 
---- - ~--

I , 

, 

I 

: 

I , 

-..;j 
o 

~ 
~ 
~ 
~ o 

f-' 
$ 
I\) 



1 2 3 

(~f e !: 
(deg) R 

0 1.60000 2 ·5WOO 

10 1.58545 2·51365 

20 I 1·54252 2·37937 

30 1.47356 2.17138 

40 1· 38226 1·91064 

50 1.27376 1.62246 

60 1.15469 1·33331 

70 1.06418 1.13248 

&:l 1.01542 1.03108 

90 1.00000 1.00000 

L 

TABLE 10.- BENDING-MOMENT DISTRIBUTION 

~amilY II. k' = 0 .6; t' = 2· 5; ~ R~ = 1.8464J 

4 5 6 7 

(f J 1 Mo~ !!: !!:!: K ___ 

R S R2 'l R2 R R R 

= (3) - 1.8464 = (4) /2 from table 8 = (2) x ( 6) 

0 ·7136) o .3568J -0 .04937 -0 .07899 

.66725 ·33363 - .04441 - .07041 

·53297 .26649 - .03034 - .046&:l 

·32498 .16249 - .01217 - .01793 

.06424 .03212 .01516 .02096 

- .22394 - .11197 .04004 .05100 

- ·51309 -.25655 .06223 .07186 

- ·71392 -·35696 .07944 .08454 

- .81532 - .40766 .09027 .09166 

- .84640 -.42320 .09395 .09395 

'T 

8 

M~ 
'l R2 

= ( 5) + (7) - 0 .01339 

0 .26442 

.24983 

.20630 

.13117 

.03969 

-.07436 

- .19808 

-.28581 -
-·32939 

-·34264 
--

~ 

, 
, 

~ 

o ,> 

~ 
~ 
~ . 
f-J 

!JJ' 
f\) 

-..J 
f-J 
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TABLE 11. - DEFLECTIONS u AND v AT 

VARI OUS VAlDES OF e 

~a.mi1Y II. k ' = 0 . 6; t' = 2. 5J 

1 2 3 

e u/R vIR 
(deg) 

0 0 -0 .05064 

10 .00001 - .04649 

20 .00446 -.03553 

30 .01549 - .02158 

40 .03270 - .00 920 

50 .05300 - .00182 

60 .07165 0 

70 .08424 0 

80 .08726 0 

90 .08939 0 

L 
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Original 

Figure 1. - Initially curved bar in original and in 
deflected shape. 

y 
I 

y 

c 
Ko--...&...-------x 

73 

Figure 2. - Forces and moments 
on a pressure-loaded ring. 

Figure 3. - Angular rotation and 
radial deflection of a point on 
a ring after loading. 

y 
dx 

r r 
I I 
'---y---J 

et:J 

Figure 4. - Coordinate system used in beam deflection. 
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(b) Family II. 

Figure 5. - Shapes of r ings used in numerical examples. 
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Figure 43. - Top view of tes t s etup . 
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Figure 44 . - General view of test setup. 
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Figure 45. - Schematic drawing of test setup. 
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Figure 46.- Wooden board to register deflections. 

Figure 47. - Strain -gage locations. 
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Figure 48. - Pressure bag used to load ring. (Uniform load could 
not be obtained.) 

117 

---------~ 



-- -- --- - - ._- - -



.03 >< 

. 02 

w/a 
. 01 

o 

-.01 

-.02 

-.03 '-----
o 

I 
L 

X Test results 
v 

It ~ 
~~ ) r-X-I----

--X .... 
-............. 

~ 
X ....... 

............... 
I'-X -.. 

~ 
i"-X ..... 

............... 
r-........X ~ 

I'- I 
--X 

I 
10 20 30 40 50 60 70 80 

e, deg 
Figure 49. - Comparison of experimental values of w /a and values of w /a computed 

by present method. a = 27.74 in.; b = 23.24 in.; EI = 105,410; q = 10.12 lb/in.; 

k2 = 1 - (~? = 0.296; t = ~I :3 = 0.488. 

'" 

~ 
~ 
g: 
I--' 

$ 
I\) 

·x -1' 
90 

I--' 
t:; 



(0, rad. 

-.03 

-.02 

-.01 

,~ ox 
o 

/' 

/~ ~ 1 

~, ) 

-- x x-v x""- --i-x_ r----./" r-... 

x"'" 
I-' -x 

~ X Test results ~ 
/" 

V ~ 
' \-------... 
I 

10 20 30 40 50 60 70 80 
9, deg 

Figure 50. - Comparison of experimental values of ¢ and values of ¢ computed 
by the present method. a = 27.74 in.; b = 23.24 in.; EI = 105,410; q = 10.12lb/in.; 

2 (
b)2 EI 1 k = 1 - a = 0.296; t = q a3 = 0.488 . 

~ X 
90 

tIi 

J-I 
I\) 
o 

~ 
~ 
~ . 
J-I 
0'\ 
\0 
I\) 



/ ,/ 

.05 

.04 

.03 I 

.02 

.01 

M 1 0 
q a2 

-. 01 

-. 02 : 

- .03 

- .04 

-.0 , 

o 

V 
/' 

/ 
/ 

/ 

;f ~ 
/' 

/ v---
/ V I /' 

,/ 
V 

// 
I /v 

~ LJ / 
/ 

/V 
V 

/I 
~' 

/ / 
IL 

/ 
v / 

X Test results / 
/ 

V / 

/' / 

/ 
,/ v 

./" // 

~ / - /' 
Calculated, considering deflections_ 

/ - - - - -- Calculated, neglecting deflections 
/ 1 1 

,,-
~ ...-.......... I I 

10 20 30 40 50 60 70 80 90 
e, deg 

Figure 51. - Comparison of experimental values of M 12 and values of M.l..2 computed 
q a q a 

by pres.ent method. a = 27.74 in.; b = 23 .24 in.; EI = 105,410; q = 10.12 Ib/ in.; 

2 b\2 EI 1 
k = 1 - (;;:) = 0 . 2~6; t = q a3 = 0.488. 

'i\ 

~ 
§; 

~ 
§l 

i-' 
$ 
I\) 

i-' 
I\) 
i-' 

--- -



r--

.0 >c 

.04 

.0 , 

.0 

.0 
w/R 

o 

-.0 

-.0 

-. 03 

- .04 

o 

\ 
'\ 

I 

~ 

/:-
~ R, 

H 

i 

~ ,/ f.-X-------V~ 

~ 
V 

';f../ 
V-1 

..,/ 
V 

V ,/" 
/ 

~ X 

x-- X Test results 

~ 
~-

10 20 30 40 50 60 70 80 
e, deg 

Figure 52. - Comparison of experimental values of w /R and values of w /R computed 
by present method. H:: 4.77 in.; R = 23.85 in.; EI = 105,410; q = 10 lb/in.; 

k'= ~:: 0.2; t' = EqI ~3 = 0.794. 

90 

.!l 

I-' 
fD 
fD 

~ 
~ 
~ 
~ . 
I-' 

& 
fD 



.016 
0, rad . 

. 012 

.008 

.004 

-') ., 

1 1 I ] I I 1 I -I I I I I 1 I f 1 I i 

f1 ~ 1111 I
J 

JJ~ I -#- ~ ~ i 1 1 J 1 J 
1 ~ 1 I 1---< 

J 1 ~l J J 1 --; 
J I : I 1 1 ~r--X r -~ ____ ~ J _ 1 

1 I ~ x- - '~bl 1 1 _x- J I I I x ~ ~ 
I I xL I 1 X T~st re~ults 1-t ~ _ I"" , ~ ~ I ! L/ J 1 ~ J 1 1 ~ . VT- 1 1 I 

~~ .-o 
60 70 80 10 20 40 30 90 o 50 

e, deg 

Figure 53. - Comparison of experimental values of ~ and values of 0 computed 
by present method. H = 4.77 in.; R = 23.85 in.; EI = 105,410; q = 10 Ib/in.; 

k' = ~ = 0.2; t,= ~I ~ = 0.794. 
R 

~ 
~ 
~ 
~ . 
I-' 
$' 
I\) 

I-' 
I\) 

LA> 



I 

1 foR" to H 

·08 
'--- f- __ r - -. 

. 06 

..... 
..... ..... 

" / ..... 
..... ..... 

.04 

.02 

M 1 0 q R2 

-.02 

-'.04 

-.06 

-. 03 

--r--- ..... 
r-... " ..... 

r-...... " --.....~f.... 
"-~ 
~ r-...... 

"- ""-.. , ~ , 

"- ~ 
~ , 

I"- ........ 

"" 
, , 

X Tes t results " ~ , 
I I 

, 
Calculated, considering deflections 

, "-...... "-
- - - - - - - - Calculated, neglecting deflections " -.10 " ~ " 

' .... 

o 10 20 30 40 50 60 70 80 
a, deg 

Figure 54.- Comparison of experimental values of M ~2 and values of M l... computed 
q R q R2 

by present method. H = 4.77 in.; R = 23.85 in.; EI = 105,410; q = 10lb/in.; 

k' =!! = 0. 2; t' = EI ~ = 0.794. 
R q R3 

--~ --

I 

I 

I 

) --
.... --

90 

~ 

I-' 
I\) 
+:-

~ 
S; 

~ 
~ o . 
I-' 
0\ 
\0 
I\) 

~I 



NACA TN No. 1692 125 

y 

K-~~-----------------x 

F i gur e 55. - Increas e of arc length due to angular displacements. 
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Figure 56. - Increase of arc length due to radial deflections. 
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