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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE NO. 1692

DETERMINATION OF BENDING MOMENTS IN PRESSURE-LOADED RINGS
OF ARBITRARY SHAPE WHEN DEFLECTIONS ARE CONSIDERED

By F. R. Steinbacher and Hsu Io
SUMMARY

An analytical method has been derived for determining bending-
moment distribution in rings of arbitrary shape under intermal pressure
loads, with the change of geometric shapes caused by the load being
congidered. For the purpose of clarity, the method developed was
applied only to double-symmetrical shapes. A differential-integral
equation has been derived for this purpose and its solution obtained
in the form of a trigonometric series.

Charts have been provided for two specific families of rings of
various proportions and flexibilities. Tests conducted on rings of
both families agree very well with the analytical calculations. For
rings belonging to or close to these families, the bending-moment
distributions and the deflections of the ring can be read directly
from the curves. For rings of entirely different shapes, an average
of 20 hours is necessary for the complete solution of the problem.
Examples have been given to show the method of obtaining the curves.

On comparing the present results with the results of solutions
in which deflections have been neglected, it is seen that the bending
moments previously computed have always been much too conservative.
The error introduced is considerable when the rings become more and
more flexible.

It is believed that by the use of this method curves can be
drawn for a typical frame in a fuselage and from these curves the
bending moments and deflections can be estimated for all similar
frames.

INTRODUCTION

Numerous papers have been written regarding the design of the
rings for monocoque fuselages. All of them were based on the assumption
that the deflections of the ring caused by the loads are so small that
the internal bending moments and shear and axial loads will be unchanged
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by any small change in the geometric shape of the ring. However, the
error introduced by neglecting the change in the geometric shape
becomes more and more important as the size of the airplane increases
and more flexible rings are used to save weight. It is the object of
this paper, therefore, to take into account deflections when calcu-
lating the bending moments in rings.

The fact that the change of geometric shape has an important
effect on the final bending-moment distribution in the rings can be
illustrated by the beam-column analogy of an initially curved bar under
axial tension loads. For the bar as illustrated in figure 1, the
initial bending moment is M = Py. If the bar is stiff and deflections
are small enough to be neglected, the final bending moment is the same.
But if the bar i1s flexible and the deflections are comparably large,
the final bending moment becomes

M=P(y - d)

The difference between these two equations depends on the flexibility
of the bar and can be considerable for flexible bars.

In this paper two expressions for the bending-moment distribution
are derived. The first expression is obtained by considering the
action of the applied pressure and the final shape of the deflected
ring. The second expression 1s obtained from the change of curvature
of the ring caused by the loads. If these two expressions are set
equal, a differential-integral equation is obtained. The solution of
this equation gives the radial deflections of the ring and the bending-
moment distribution. Another formula is derived from which the angular
displacements can be determined when the radial deflections are known.

The rings discussed in this paper are assumed to be under only
internal pressure. The method recommended herein can be extended to
any system of external loads and is also applicable to rings of any
shape although only shapes of double symmetry are discussed in the
present paper. The following assumptions are made:

(1) The rings have regular and smooth shapes of the type
encountered in fuselage frames.

(2) The thickness of the ring is small compared with its radius.
Consequently the following formula can be used with an extremely small
error. (See reference 1.)

-
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where

l/po original curvature at certain point of ring

l/pl final curvature at corresponding point of ring after ring
is deflected

My internal bending moment built up because of deflections
of ring

ET bending flexibility

(3) The ring is regarded as inextensible.

(4) The deflections of the ring are defined by its radial
deflections w and angular displacement @$. Both w and ¢ are
assumed to be large enough to be significant but small when compared
with the radius of the ring. Therefore, all terms can be neglected
containing second or higher powers or products of w/r or. gl Also
all terms containing second or higher powers or products of the

2 2
following items are neglected: dw/r, Q—H/L, QQ, and Q;Q’ where r
gl g2 @ 362
and 6 are the polar coordinates of the ring.

This work was conducted at the University of Michigan under the

gpongorship and with the financial assistance of the National Advisory

Committee for Aeronautics.

SYMBOLS

a,b major and minor axis, respectively, of elliptical ring

8n,bpsCp,an,60,fh, 8,y Fourier coefficients

2
22 (2)
a

k' =8

R
q applied pressure load per unit length
r,6 polar coordinates of original ring
ri,94 polar coordinates of deflected ring
rp radius from origin to point A on original ring

8 arc length along circumference of ring
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nondimensional parameter <EI/qa$)
nondimensional parameter (EI/QR%

displacements of a point on ring parallel to x- and y-axis,
respectively

radial deflection of ring
Fourier coefficient for radial-deflection function
bending flexibility of ring

certaln functions

height above x-axis of straight-line portion of rings of
family IT

axlal stress at point A on ring

polar moment of inertia of equivalent ring of elastic weight
referred to original ring

polar moment of inertia of equivalent ring of elastic weight
referred to deflected ring

certain constants
bending moment

bending moment in ring if change of geometric shape of ring
is neglected

bending moment at point A on ring

bending-moment expression derived from consideration of
applied pressure load and final shape of deflected ring

bending-moment expression derived from consideration of
internal stress due to change of curvature of ring

bending moment in ring at point defined by 6
certain constants
radius of circular arc of rings of family IT

area of equivalent ring of elastic weight referred to
original ring

-
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Sl area of equivalent ring of elastic weight referred to
deflected ring

a angle of rotation of cross section of ring

Po radius of curvature at a point on original ring

Py radius of curvature at point on deflected ring corresponding
to po

¢ angular displacement

THEORETICAL ANALYSIS

In the following analysis two expressions for the bending-moment
distributions are derived. The first expression is obtained from
consideration of the action of the applied pressure load on the final
shape of the deflected ring. The second expression is obtained from
consideration of the internal stress distribution due to change of
curvature caused by loading of the ring. Hereinafter the bending
moment corresponding to the first expression is designated by Mg

and the bending moment corresponding to the second expression is
designated by M;. By equating the two expressions, a differential-

integral equation which represents the equilibrium condition of the
final deflected ring is obtained. The solution of this differential-
integral equation determines the radial deflections of the ring and
the bending-moment distribution. From the radial deflections, the
angular displacements can be found from the nonextension theory, which
is treated in detail in appendix A.

Expression for M,

The moment M, is the bending moment determined from consideration

of the applied pressure load and the final deflected position of the
ring. Before the expression for M, 1is derived, a typical method

which has been used to determine the bending moment in the ring without
consideration of the change of geometrical shape of the ring is
discussed.

Let the shape of the given ring be defined by

r = r(0)
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The ring is assumed to be symmetrical with respect to both the x- and
y-axes. This simplification does not affect the validity of the method,
which can be used for any shape. The intensity of the internal pressure
on the ring is designated by q-.

An imaginary cut is assumed at point A (see fig. 2) and two
unknowns H, and M, are introduced, where Hy 1is the axial force

at A (positive if in tension) and M, is the bending moment (positive

if the outside fiber is under compression). There is no transverse
shear at point A because of symmetry. (See reference 2.) The ring
is now statically determined.

The bending moment at any point C, defined by 6, as shown in
figure 2, can be expressed as

- M. - - 4,2
Mg = MA HA(FA rg sin.@) + 21

Substituting the expression

12

= rA? + r92 - 2rprg 8in 6
into the foregoing equation, there results

My = A + Brg sin 0 + Crg® (1)

where

B=HA'<1TA ( (2)

J

The terms A, B, and C of equation (2) are independent of 6.
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The angle of rotation a of the cross section at C and the horizontal
displacement wu of point C, both relative to point A, are given by the
equations:

C
a= | 2 (3)
A

¢ M
Uy = —=2(ry - Ty sin 6}(18 (4)
A ET

Here C can be any point on the ring. If A' denotes the other end
of the ring at the cut, equations (3) and (4) should also hold at
point A'; and since there is no rotation nor horizontal displacement
at the cut, the followlng relations are true:

My ds
a‘Al = f MgI =0 (5)

2
1}
0
:D"i
]
H
D
j00]
e
o}
S
o8
o]

-f%resinewzo (6)
BT

The substitution of equation (1) into equations (5) and (6) yields
the following equations:

2
r, sin 6 r
ds SRR e S
AfEI+B/ = + fEI 8 (7)
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0 Tg gin 6 ds 5 r92 sin29 ds . re3 sin 6 ds 8
ET +e BT * BT =0 (8)

Because of the property of double symmetry,

fre sine%]s-:=o
3sine & _o
fre EI

(9)

Therefore

I‘ee ds
A EI c
ds @ (10)
EI
B =0 J
Or, with the following designation,
2
2% ds
J = d
EI
r (11)
ds
SE= =t
fe
it follows that
A=-2¢
S
(12)
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After substituting equation (12) into equation (1), the expression
for the bending moment becomes
2 J
C(r - =
(® -3)

%(re? - g) (13)

The expressions for J and S can be easily memorized because they
are equivalent to the polar moment of inertia and area of the
corresponding ring of elastic weight, respectively. (See appendix B
for more details.)

Mg

]

It should be noticed that the bending moment given by equation (13)
is a function of r. Any change of shape of the ring changes the values
of r and consequently the bending moment also is different. All
papers in the past have neglected this change and have called Mg,

given by equation (13), the final bending-moment distribution. It is
shown later in the examples that the error is considerable for flexible
rings. The derivation of equation (13), however, leads to the
establishment of the expression for Mg, which is based on the final

deflected shape of the ring rather than the original shape.

The final position of the deflected ring is defined by ry = rl(e).

Because of the assumption that the ring is inextensible, or in other
words, ds = Constant, there immediately follows from squation (13)
the following expression for Ma which is referred to the final

J
=l e 14
e él Sl> .

2 ds

deflected ring:

where
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Equation (14) glves the expression for the bending-moment distribution
from consdideration of the applied pressure load and referred to the
final deflected position of the ring.

If the shape of the final deflected position of the ring is
known, the bending-moment distribution can be obtained immediately
from equation (14%). The problem now 1s to find a method for deter-
mining the final deflected position of the ring, which, in turn,
depends on the bending-moment distribution.

Expression for M;

The moment M; 1s the bending moment built up from the fiber

stresses resulting from the changes of curvature of the ring when it
is deflected. To set up the relationship existing between the bending
moment M; and the deflections is rather difficult, especially when

deflections in both directions (two-dimensional) are to be considered.
Timoshenko presents the derivation of a differential equation that
gives the relationship between the radial deflections and the internal
bending moment. (See reference 3.) The differential equation is

where w 18 the radial deflection of the ring. This equation is based
on circular rings and can be used only for rings that are nearly
circular. In the followling paragraphs, a differential equation is
derived which is more general than the one given by Timoshenko.

Referring to figure 3, let the original shape of the ring be
defined by r = r(8). An arbitrary point A, after loading, experiences
an angular rotation @ and a radial deflection w = BD. Its new
position is completely defined by ¢ end w, both of which are
functions of 6. The deflected shape of the ring is then represented
by the equation

ry g(el) (16)

where

(17)
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From the calculus, the original curvature of the ring at point A is
given by

2 2
- th + 2(%§>
de

§; [%2 . (%§>%]3/2

and the curvature of the deflected ring C; at corresponding point D

(18)

is given by
o) d?rl dry £
a6 .2 de,
1 _ = (19)
Py 5 3/2
2, (T
1 ao4
Since
dr
1 4
ir) 3 3 (r + W) n ey (20)
#; a4y é%(e g 1+
as
. 1<i‘i;>
dI‘l= dae d_Ql _ r" + w" _ r' +w' ¢" (21)
a0,° %1 (L+g92 (1+g13
dae

where r', w', and so forth indicate derivatives with respect to 6,
equation (19) becomes
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n " 1 1 1 12
(r+w)2-(r+w)[r + W _.r' +w ¢;l+2<r +w')
1 (1+49% (14413 1+

Pl

2 3/2
Er e (l__gr”

From the assumption that the ring is inextensible, there exist
certain relationships between the angular displacements ¢ and the
radial deflections w. These relationships, as given in equations (23)
and (24), are derived from the nonextension theory. (See appendix A.)

(22)

r 1

14

(23)

=
I
|
Rl E

o
3

1 1_ n 12 ! '
¢"=E(r_>+L[.l_r_+2<r_]-w_’r_ (2k)
N> r T 2 r 3 6/

The foregoing relations, when applied to circular rings for
which r = Constant and r' = 0, become

oo -2

(25)

1

"W
I = r

which are the equations given by Timoshenko (see reference 3, p. 208)
for inextensible circular rings.




NACA TN No. 1692 13

Substituting equations (23) and (24) into equation (22) and
simplifying (see appendix C for details), the following equation is
obtained:

L ez el

N rE ) (r?'f]ye

Now, from equation (18),

r'" r'2
1l -=— +2(—
1 i r)

==

/2
@]

Therefore

. W+ w' = (27)
r2 1+ (_r_')
u r

But as already mentioned (assumption (2) of the INTRODUCTION) the
following equation 1s true:
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Therefore
M N2
Wy e (_r__) (28)

This equation expresses the relationship between the bending moment
at a certain point on the ring and the radial deflection of the ring
at the same point.

Equation (28) is valid not only for rings but can be applied to
any curved bars provided that the contour of the bar is regular and
smooth, the deflections are not too large, and the bar is inextensible.
Two extreme cases are given in the following paragraphs for
illustration.

First, for circular rings, r is constant and r' = 0.
Equation (28) reduces to

which is exactly the formula given by Timoshenko .
Next, consider a straight beam. Let the origin be chosen at

infinity so that r = « and r' =0 at all points on the beam.
Equation (28) can be simplified as

For the x,y-coordinate system used in beam deflection, w = y,
r d = dx. (See fig. 4.) Thus the foregoing equation becomes

which is the familiar straight-beam formula.
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Differential-Integral Equation

Equation (14) gives the expression for M, which is determined

by considering the applied pressure load and the final deflected
position of the ring. Equation (28) gives the expression for Mj.

It is determined by considering the change of curvature of the ring
resulting from the loading. At the final deflected position of the
ring, these two bending moments M, and M; should be equal at every

point on the ring; that is,

Therefore,

W, _1af. e _ 91 2\/ (r_)2
W +w—2EIQl S)r 1+ (Z (29)

In this equation, r; and J; are referred to the final deflected
position. (See equation (1k4).)

From equation (17),

2
r.2 = (r+w)2=r2E+2E+(5’-’>]
AL T iy

g (30)

Therefore

Jy

2
f I'lEIdﬁ - / r2|} +2-¥ + (‘;’)E:I g‘—; (31)

Remembering the assumption that any term containing a power
of w/r higher than second can be neglected, equations (30) and (31)
become

r12 - r° + orw (32)
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2 ds
J1=f /m—
ds
df s J%) 2wr = (33)

Putting these expressions into equation (29) yields

NS
W= X q<1.2+2rw-§.—2/ wr g§>r2”l+<£—> (3%4)
2 ET S 5 EL v

Transferring all terms containing w to one side of the equation gives

N |~

w' o+ w - \’l o, lL.]- 2\/1 + ‘)K7 wr 48

Ei il ' Jr2\/1 + (35)

This is the final differential-integral equation with the radial
deflection w as the only variable in the equation. The solution of
this differential equation and a method to make it more practical for
applications is discussed in the following section.

Solution of Differential-Integral Equation

The solution of the foregoing differential-integral equation can

be made by the following steps:

(a) All the known functions and unknown functions are expanded

into Fourier series, with known and unknown Fourier coefficients.
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(b) By comparing the Fourier coefficients of both sides of the
equation, a system of simultaneous equations is obtained.

(c) The solution of the simultaneous equations gives the unknown
Fourler coefficients.

In carrying out these steps, rewrite equation (35), using the
following relationship from the elementary calculus:

ds = r \,1 + (%')2:‘&9 (36)

Equation (35) then becomes

In equation (37), let F,, F,, and F3 stand for the following

functions:
r2 n 2
F1=%F l*@ﬁ

1\2
r, = 2\ - (2) L (38
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The functions F;, Fo, and F3 are known for any given ring. The
equation becomes

" q q J
w' W - WP, + :c,'Flf F,w do = —2-<F3 . -S-Fl) (39)

Since F,, Fp, and F3 are known functions, they can be expanded
into Fourier series with known coefficients. Therefore,

=
= E anp cos nb

n:o, ,)-I-on-

Fo = E b, cos nf = (40)
n::O,E,lI----

F3 = E Cp cos nod

n=0,2,L4. ..

where a are known Fourier coefficients. For double

ns Pp, @&nd cp

symmetry, the case under study herein, n 1is always an even number.

Now let w be represented by a Fourier series with unknown
coefficients:

w = :Eij Ap cos md (41)

m=0,2,4...

where Ap's are to be determined. From the fact that the ring is

double-symmetrical and the external load system is also double-
symmetrical, the radial deflection w also is a double-sSymmetrical
function. Therefore all m's are even numbers.
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Differentiating equation (41) twice gives

Therefore,

ZE:T meAm cos

m=0,2,1. ..

m=0,2,4

mo

E;:_ (} = m2>Am'cos m

13

(42)

(43)

The substitution of these relations into equation (37) ylelds

ZE:: (; = n@DAm.cos md - q

m=O,2,)+. .o

i }:j

% n=0,2,4...

=g<n D

2

=0,2,4...

8, cos né f E Apcos mb
m=0

n=0,2,4...

2k ..

E bn cos nb

zz:: Amcos mo

m=0,2,k4...

ZE:: a,cos nf db

Cp cos nf - dJ § ap cos né)

S n=O,2,1+

=02 s

(44)

In order to facilitate the comparison of the coefficients on both

sides, equation (44) is simplified.

the integral sign in equation (44) as follows:

Jl) E Ap cos md E an cos nbé de
m=0,2,4...

>

m=0,2,L4.

2Apapn +

n=0,2,k4...

2n
Ay cos md
. 0 n=0

}Z:. mAmam

m=2,k4...

>

)2})4" *

.

First, consider terms involving

an cos nb db

(45)
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Z (l = mz).l\m cos mb - q Z b, cos né Z Apcos mb

m=0,2,4... n=0,2,k4... m=0,

+
nhe

Z an, cos nb <21‘(A080 + Z "Akak>

n=0,2,k4... k=2,k4

N e

< Z Cp cos nf - o Z an cos nfa
n=0 cee

’2,)-}-... S n=O,2,1+

2,k...

(46)

The second step is to simplify the second term of the equation

which contains the multiplication of two Fourier series.
carrying out the multiplication,

b, cos nb E Ap cos mb
n=0,2,k... m=0,2,k4...

do+d200829+ducosh6+.

Z d.mcosmﬂ

m=0,2,k ...

By actually

(47)
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where
i ~
20 = Laovo + 2 2 Anby
n=0,2,4...
dp = 3(Acbp + Ag%) +3 D (Audnip + Aneobn)
n=O,2,)+- ..
dy = %(Aobh + Agbp + Ath) + % Z (Anbn+l+ i An+1+bn) r
n=0,2,%...
O T -E.l-(Aobm + Bobpp + + Ap-obp + Amb0>
2 % Z (Anbn+m & An-t»mbn)
n=0,2,k... 5
and equation (46) then becomes
e -
; (l m)Am cos mg - q d,, cos md
m=0,2,4... m=0,2,4...
+ -% 2rlpag + Z A8y ap cos md
k=2,k... m=0,2,4...
= % Z (Cm = ‘S—Iam> cos md

m=o,2,)+- o

21

(48)

(49)
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or

Z ( —m2>Am—qdm+(—Sl<2ﬂAoao+ > nAka];am cos m

k=2,4...

B % ZE::.'. (%n - %EQD cos md , (50)

Equation (L44) has been reduced to a more usable form in equation (50).

Now the Fouriler coefficients on both sides of equation (50) can
be compared.

For m =0,

Ag - ady +%(2Aoaoﬂ * Z ' 7£Ak’ik)&o = %(Co = %%)

=0,k ...

Hor  m =2

-385 - qdp + % (21\‘Aoao -+ ZA yrAkal>a2 = %(ce =

b

U)Llntq

2> L (s1)

For m =k,

q
e T <2’°‘*oao N ﬂka};au - 3 - ‘g‘*“)

=0, L.

"

As many simultaneous equations as wanted can be formed. The solution
of m simultaneous equations gives m unknowns, A5, Ay, 4) -

In actual cases, as shown in the examples in appendix E, three or
four simultaneous equations, which give three or four A, terms, are

sufficiently accurate for ordinary rings. The following system is the
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system of four simultaneous equations which give four Fourier
coefficients, Ay, Ap, Ay, and Ag. The following equations are

obtained from equations (51) and (48) after collecting the terms:

ao(1 - abg + 2&nagag) + Ao(Bb, + magas ) + A -2y, + tdage,)

+ A6<_%b6 + -%naoa6> = % co - ga@

AO(—qb2 + 2"%"3082) - A2<—3 - aby - %bh + ﬂ%ia&g)
q J
+ Ah(—%bg = (2—1b6 + n%aeag + Ag —%bl+ - -%bg + “§3‘236> = g Co - §82>
q

AO('th + 2%7‘&0&1:) + A,2<--g-b2 = §b6 + 1\‘%&)4_82)

* Ah(—l‘i - gbgy - %bB & "%ahah> 2 A6<'%b2 - %blo * "%aha6)

J

- 3o - &)

Ao(-qbe + Eﬂ%ﬂo%) . Ae(‘%bu - %bs it ﬂ-g%ae)

g oo + olegn) (55 - oy - Pz e

-1 -$9

23
|

r(52)
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With A, determined, the radial deflections can be obtained from

equation (L41) and the bending-moment distributions, from equation (1L).

The angular displacements ¢ can
nonextension theory (appendix A).

Angular

When the radial deflections

be determined by equations from the

Displacements

w are known, the angular displace-

ments ¢ can be found from the following equation, obtained from the

nonextension theory (appendix A) .

g = -

¥om r (53)
3¢ r e

The integration of equation (53) gives the angular displacements ¢.

¢=-f¥de-fl’r—'£ride (54)

Before evaluating the foregoing integration, the Fourier coeffi-

cients e for the function l/r

R ]

Ly

n=0,2,

must be determined:

ey cos nb (55)
Mol

Since l/r is also a double-symmetrical function, the n's are even

numbers only. Therefore,

b

- 2

m;O,EZM...

Ap cos mb

} en cos nb

n=0,2,k. ..

= :S_- fn cos nb (56)

n:O,E,)-#. ..
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where
) ak 1 |
fo = -2-Aoeo + > E Anen
n=0,2,k...
il al;
fp = 5(A082 + A12%) *3 > (Anen+2 + An+2en> > (57)
n=0,2,k4...
1 E
fh = %(Aoeh + A262 + Aheo) + -é- (A'nen## + -A-n+).].en>
n=0,2,1+ .o
and
f%d@:f(foJffg cos 26 + f), cos 4o + . . .>d8
= fy0 + Z fn sin nb (58)
n=2,4... ?
It is also known that
1
d 1
ie- = -(—;) = Z ne, sin né (59)
n=2’)-|».-.
and
w'rl_ . mAmsint E ne, sin nb
= o m:o’g’h' . n:E,)-#-..
= - gn cos nd (60)
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where
&0 = % Z neAne’n 1
n=2,4...
& = % Z n(n + 2)<Anen+2 + An+26n>
n=2,k4... r (61)
Q=g 2 n( e W(en + dnen) - 32 ()
n=2, :
............................ J
Therefore,

—
R |€_
R |7

&

Cﬁ

9
2
&

= =gl < — sin np (62)

Substituting equations (58) and (62) into equation (54), the
following form for ¢ is obtained:

ASS
|

f
_—GOG+ § ?nsinne-goe- g %sinn9>+c

n=2,4... n=2,L4...

_E%-go>9+ Z —f—n—%-ﬁsin n@A‘-i-C (63)

n=2,4...

where C 1is the constant of integration.
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The present boundary conditions require that:

(L) at 6 =0

b ¢=O

and (2) at 6 =3, ¢ =0

For condition (1), equation (63) becomes

g(0) =0 =0 + Z (o) +¢C

n=2,%...

For condition (2), equation (63) becomes
B(Z)=0= (55 - g)2- > (0
(2) ( >2 n=2,4... .

(fo—go>321=o
fo-go=0

And equation (63) becomes

f -
g = - g ——Il—}-l;%sinne

n-g,%...

which is the final form for the angular displacement @.

|
|
o7

(64)

(65)
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The fact that £y - gy must be zero gives a good check on the
values of Ay, Ap, Ag - - . - This condition should always be -
satisfied. A proof that this condition fy - gy = 0 1is always

satisfied automatically is given as follows: From equation (505

whereas from equation (28)

Therefore,
M 4 - W+ W ds
ET IND
re\[1 + <r_) -
T
25 "
= MEES Wl oS ) (66)
r
0
Since
1 = § ey COS nb
4 n=0,2,k4k...
w4+ W' = (l—m2>Am cos md
m=0,2,4...
therefore
Bisl <l - w°)Ap cos md Z en cos nd
r m=0,2,k4... n=0,2,k... )

= S ) hy cos nb
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where

hy = eoho + > 2 - P)eny
Lo (67)

Hp

Substituting into equation (66) gives
21 o 27
EF%:E— a6 = + § hy, cos n%)dﬁ
O O n-_—2,)+...

or

Comparing equations (57), (61), and (67), it can be seen that

hg =f5 - g =0

Thus fo - & = O 1is a condition which must be satisfied-automatically.

Summary of Procedure

In the foregoing sections, there has been developed an analytic
method of finding the bending-moment distribution in double-symmetrical
rings of arbitrary shapes, acted upon by internal pressure loads. The
ring must have a regular and smooth contour, with its thickness
negligible compared to the radius. For such rings the procedures to
solve this problem can be summarized in the following steps:
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(1) Determine the Fourier coefficients of the following given

functions:

Fi =

F3

2
= E ap cos np

n=0,2,4

= by cos nb
n=0,2,k...

= Cp cos nb
n=0,2,%. ..

r

(68)

If the contour of the ring is expressed analytically in simple functions,

the Fourier coefficients can be obtained by the usual method of

integration. Otherwise, the coefficients must be obtained by graphical
integration, which is explained in appendix D.

(2) Perform the following integrations:

25
2 3 1\2
3 - = el
EIdB‘f EIV1+<r 4o

0

21 2
_d_5= o 1+ ’I:-" de
EI 5 BI r

Jd =

\ 5=

f
i

obtained from steps (1) and (2):

Koo

Koo

Koy

K06

| (3) Calculate the following constants by substituting the results
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Keo="°2+2S %)
4 b,
Kpp = ~bg - & + Zeo8o
| bo bg
\ Koy = -5 ~ 3 + 5%
bh bg
Krg=-5 = 5+ 290%

T
; Ku6-'322‘—2—+§%&6
Keo = ‘%*%’!aeao
Kgp = ’% g EQQ + Zagao
‘ K6u=‘P§'P-219'+§a6au
} Keg = Do - 3212 + 5%
% = 30 ~ o)
a2 - 32 - £e0)
2 0 - (e6 - Zeo) (69)
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(4) Substitute the foregoing constant terms into the following
system of simultaneous equations:

AO<%— + KOO> + AgKop + AyKoy + AgKog = Q

Aao + Aol 2 + Kop) + Mol + Agies = 9 |
. (70)

AoKy + AgKjp + Auﬁ-lf - Kuu) + AgKyg = Q)

Aofeo + BoKgp + A)Kg), + A6<3§ # K66> Q6

.

(5) For a given pressure load q, the foregoing simultaneous
equations can be solved for Ay, Ap, Ay, and Ag.

(6) The radial deflections w are glven by the following equation:
W =Ay + Ay cos 20 + Ay cos 46 + Ag cos 60 (71)

(7) In order to find the angular displacements, the Fourier
coefficient e of the following functions should be first determined:

n
= ZE:: e cos nb (72)

n=0,2,k...

[

Then values of A, and en are substituted into the following
equation to see if the condition fo - g = 0 1s satisfied.

o=t +s 2 (- Dage, (73)

n=2,4
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(8) Knowing e, and A , determine f, and g, as given in the

following equation:

Z § (Anen+2 * An+23n>

il al.
fr = = Aoe + A26 + =
2 2l 0
2( ) 2 n-0,2,k.

£y = L(agey + hpop + Ayeg) + 2 > (Anen + Angien)

n=0,2,k...

f6 = -23=<A066 + AQG)-L + Al&eE + A6eO>

"3 n:o,%. » (Amonss + Anseon)
& = .él_ Z n(n + 2) (Anen+2 & A'n+26n)
n=2,4...
3

n:e,)-l»o.o

r (74)

(6 (boonis + Anisoa) ~ Hlleou + Mt

(9) The angular displacements @ can be obtained from the

following equation:

(75)
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(10) The moment distribution M is given by the following
equation:

af2 g _2 ds
2(%2 S + 2rw S J[)rw BT

%12-%+2rw-§<2nAoao+ Z A8, (76)

=

From the foregoing procedures it can be seen that the main part of
the solution of the problem is the determination of the Fourier coeffi-
cients of several known functions. The rest of the procedures are simply
algebraic. On the average, it takes 20 hours to solve completely a
problem.

Preparation of Charts

Following the foregoing procedures, solutions have been obtained
for two specific families of rings. The first family consists of
elliptical rings (fig. 5(a)) with various eccentricities. The second
family consists of rings formed by two semicircles and two straight
lines. (See fig. 5(b).) The ratio of the radius of the semicircle
to the height of the straight-line portion is variable. All rings are
assumed to be of constant EI.

Charts and tables are provided for both families of rings. The
Fourier coefficients ap, by, c,, and en are given in tables 1 and 2
and are also plotted in figures 6 to 13. Since both families of

rings are of constant EI, the Fourier coefficients are obtained in
terms of EI and the dimensions of the rings.

Values of J and S are given in table 3 and also plotted
in figures 14 and 15. When these values are substituted into
equation (70) the simultaneous equations are obtained. For a given
value of q and EI, the simultaneous equations can be solved for Ay,

Ay, Ay, Ag - - - - TFigures 16 to 21 give the values of A, for

various ratios of q/EI.
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Knowing A, W, f, and M are obtained from equations (71), (75),
and (76), respectively. The results are plotted in figures 22 to L2.

Two examples are given in appendix E to illustrate the foregoing
procedures in detail.

TEST

Test Specimens

Two steel rings were tested, one elliptical and the other made
up of two semicircles Joined by two straight lines. (See fig. 5.)

Test Apparatus and Procedures

Figures 43 and 44 show the test setup. The ring was tested in a
horizontal plane. Its circumference was divided into a number of
segments with equal arc lengths. Wires, loaded equally, were attached
to these points. Each wire was led through a pulley, connected to a
fixed horizontal ring in such a manner that the pull on the test ring
was normally outward at each point. (See fig. 45.) The concentrated
loads were sufficiently close so that they could be assumed as
simulating pressure.

In order to register the deflections of the ring, a wooden board
was placed on top of the ring. The contour of the ring was traced on
the board, with marks denoting the division points, before and after
the ring was loaded, as shown in figure 46. The radial and angular
displacements can be measured directly on the board.

Bending moments were found by electrical strain-gage readings at
three points on the ring. (See fig. 47.) The value of the effective EI
used was determined from bending tests on a specimen cut from the ring.

It might be mentioned that the test was at first tried with the
aid of a pressure bag. The ring was laid around the bag which was
blown up with compressed air. Special devices were used to adjust the
pressure between the bag and ring so that the ring would be uniformly
loaded. The test was unsuccessful, however, since it was found that
uniform loading could be obtained only through long and tedious work.
(See fig. 48.)
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Test Results and Discussion

The test results are plotted in figures 49 to 54, together with
curves obtained by the method developed in this paper. The agreement
between test data and calculated results is good.

In figures 51 and 54 where bending-moment distributions along the
circumferences of the rings are given, an additional curve is shown in
each figvre. These added curves represent the bending-moment distri-
bution when changes of geometric shapes of the rings caused by loading
are neglected. The symbol M, is used to designate the bending moment

calculated without considering the deflections of the ring. The value
of My can be found from the following equation:

w- 36 -9)

It can be seen from figures 51 and 54 that the bending moment
obtained without considering the change of geometric shape is too
conservative. At the point of maximum bending moment the difference
is quite large.

CONCLUSIONS

From an analytical method derived for the determination of bending-
moment distribution and radial and angular displacements of flexible
rings of arbitrary shape under internal pressure load, with the change
of geometric shapes caused by the load being considered, the following
conclusions can be made:

1. Results obtained by the present method showed good agreement
with test data and proved that results obtained when change of geometric
shape was not considered are inadequate for flexible rings.

2. Although only rings with double symmetry under intermal pressure
loads are discussed in the present work, the method can be extended to
include rings of any shape under any system of externmal loads.

University of Michigan
Ann Arbor, Mich., October 17, 1946
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APPENDIX A
NONEXTENSION THEORY

The deflections of a loaded ring can be completely defined by the
radial deflections w and angular displacements ¢, both of which are
functions of 6. (See fig. 3.) The deflections w and ¢ are
independent of each other if there are no additional conditions imposed
on the ring. They are definitely related, however, if the ring is
assumed to be inextensible. The nonextension theory gives the relation
between w and ¢ for such rings.

Timoshenko (reference 3, p. 208) has given the relation between

the radial deflections w and the tangential deflections v (which

correspond to angular displacements ¢ in the present case) for
circular rings as follows:

Y . w=0 (A1)
dae

For circular rings this can be written as

rﬁ' +w=0 (a2)

where

This relation, however, is not quite accurate for rings of noncircular
shapes. A relationship between w and ¢ which is more general and
can be applied to rings of any shape is derived by means of several
steps as follows.

Arc Length in Polar Coordinates

Given a small element AB = ds on an arc C.

CA=r

OB =1r + dr
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With O as the center, OA as the radius, swing a circular arc which
will cut 0B at D. Then

OD=0A=r

BD = dr

&

(a8) 5 = \/ (4D)2 + (BD)2

\/(r d6)2 + (dr)?

rao\[1+ (;-')2 (A3)

where the prime means derivative with respect to 6.

Increase of Arc Length Due to Angular Displacements

When point A (fig. 55) is allowed an angular displacement ¢
and point B an angular displacement @ + df, with no radial deflections,
the new position of the element AB becomes EF. Since there is no
change of radius,

OE=0A=r
OF = 0B =r + dr

and the length of the arc EF 1is

= (d8)gp = V;e(dé +d¢—)-é—47i;)—2

r d@\ﬁl F g2 4 (%-)2

H

1]
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The increase of arc length due to the angular displacement is (Ads)¢

where

1]

(as)gp - (ds)yp
r de\[(l + @02 4 <3r1>2 - r de\/l + (1“—92 (A5)

Increase of Arc Length Due to Radial Deflections

(AdS)¢

The element of arc FF is now allowed to have radial deflections.
Point E moves radially to G and F, to H. (See fig. 56.)

GE = w

FH = w + dw

The arc length of GH is then

Q2
=
1

(as)g = (612 + (m)2

\/(w + r)(ae + (195)2 + (dw + dr)?

(e + w)as \[(1+¢ (2:3)2 (46)

Il

and the increase of length of the arc due to radial deflections alone

is

(Ads) .,

where
2 r'+w'2
(Ads)w=(r+w)d9 (L+9") +<r+w)

-r qe\/(l 5 ¢')2 + <r;.1>2 (AT)
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Equation for Deflections of an Inextensible Ring
The nonextension theory requires that the total increase of the

arc length due to both radial deflections and angular displacements
should be zero. In other words,

(Ads)¢ + (Ads),, =

From equations (A5) and (A7),

(r + w)de\/(l + g%+ G‘?':—::)Q o de\/TG})E

or

(r+w)\/(l+¢) (rr+v \/1+<) (88)

2

Squaring both sides and dividing by r yields

(1 P §>2E1 P <£11—:_¥'>2 o r;)g

or

<} T %)2(1 + ¢')2 + <%; +.%%>2 =1+ <%é>2

or

Q+§>2(1+¢’)2= ol <Er_>2
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or

¢'—\/l-2%w?'-<w?')2-l (A9)
1

Equation (A9) gives the relation between the angular displacements and
the radial deflections for an inextensible ring. Equation (A9) is
very general and can be used for rings of any shape.

Simplifications

Equation (A9) can be greatly simplified for rings, the
deflections w and $ of which are not very large when compared

with the radius of the ring. In other words, ¥ << 1 and § << 1.
1y
Also, it must be assumed that %5 <1 and @' << 1. Then any term

of power higher than two or products of the foregoing items can be
neglected. Equation (A9) becomes

<1+P;’>(1+2¢') =1-2L ¥

or
1+ 2¢' +o¥ _ 1 -pr' ¥
r T
or
gog-me o

Differentiate equation (Al0) once as follows:

' N " 1
¢"=E_I_'_'.+F_l:-l+2<£_) -_I:_J o (A11)
Agl 3¢ 36 r ax’ TN

Equations (Al0) and (All) are the relationship between @ and w for
inextensible rings.
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For circular rings for which r = Constant and r' = O,
equations (A10) and (All) reduce to

which are exactly the relations given by Timoshenko in reference 3.

1692
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APPENDIX B
EQUIVALENT RINGS OF ELASTIC WEIGHT

The term '"elastic weight' has been used by Monr (reference k4).
It is designated by "dW" and is defined as

dw = g‘T;- (Bl)

The equivalent ring of elastic weight is then defined as the ring,
the median of which has a shape which is exactly the same as the shape
of the original ring, but the thickness t; of the equivalent ring

is 1/EI, where EI is the bending flexibility of the original ring.

The cross-sectional area of the equivalent ring then is

A=ftlds=f%§- (B2)

and the polar moment of inertia of the equivalent ring is

2 ds 2
I=/rtlds=/—)EIr (B3)

When equations (B2) and (B3) are compared with equation (11), it is
seen that

of the equivalent ring of elastic weight.

43
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DETATLED DERIVATION OF EQUATION (27)

The details of deriving equation (27) are as follows.

equation (22), where

r' + w'

(r + w)

2-(r+w) r"+w"2_
(L+¢")

(1+¢7)°

Start with

e

Py | Er X W)g . (%:E—g—):] 3/2

n n 1 1 1 12
r' ¥ or',w o w!
<} P E>2 = <} i w> r " r r r gnl, ol T
i Y+ gn® (4¢3 = _
= v
L 2

By neglecting all terms containing second or higher power or
products of the deflection items and using the binomial theorem,

the following relations are obtained:




e
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The foregoing equation can be further simplified by using

equations (A10) and (All). The numerator of equation (C2) becomes

and the denominator becomes

2 2 '
Denominator = r(l + H) E + (2—' 2-"—’(1' ') youlr’
r r\r r r

2

=) @]

r\r
232 N3/
=rQL+E) 1+ 5‘;) (l+2£—£—>
Therefore
1 Numerator

* e @] o)

(c3)

(ck)
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or

b 61"

Numerator(l.-3‘—'- a o )( _3w_'r_'_ 5 0 )
T P r

Il
]
T
+
g
sl
L
]
Nk
=
1z
C1
=
(]
]
s [
=
+
/l\
L
T
)
&

But from equation (18)

or
N2 3/2
ril + (& " NE
L s/ :1-%+2(r?) (cé6)
0
Therefore
3/2
r[l . (r_ﬂ G ] i)z I=r x.)E X <r_ﬂ
T P Po x> 3P e
or
2 "
T L - L 1+ ') _ (¥ + X
f1 Py r r r
(&) o
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APPENDIX D

GRAPHICAT METHOD TO DETERMINE THE FOURIER

COEFFICIENTS &a,, b,, c,, AND e

n

For rings, the contours of which cannot be expressed analytically
as simple functions, the following procedure is a graphical msthod for

quick evaluation of the Fourier coefficients ans, bps ¢, and e, of

the following functions:

ZE:: ap cos nb

r2 ! &
Fl = =—=\|1 + (—) =
ET & n=0,2,4...
3 2
Fo = =\ o+ (1) - E b, cos nb
ET ie
n=0,2,k...
L 2
F3 = -\ 4 (?i> = g Cp COS nd
I r n:O,Q’l‘--..
1 = § en cos nb
i n=0,2’)+0-0

Table 4 is filled in first. Then rows 7 to 18 are plotted
against the arc length s, and rows 19 to 22 are plotted against 6.
Let E7, E8, ... E22 represent the area under the corresponding

curves. The Fourier coefficients are

ag = %E7 by = €0 = %E15 0 = %El9

:\;!d[\)
=
-

82 = —):;’E8 b2 = —]:(-—Elz Ce = -L—;El6 82 = L—;Ego
2, = g by = 7813 o = By oL = 321
_‘ = = — /—L—H?
7€ = 7°10 Ly = %Elh C = iE18 26 =20
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APPENDIX E
EXAMPIES

Two examples are given in this appendix. A method of checking
the final results is also presented at the end of this appendix.

Example 1

Given an elliptical ring with the following data (see fig. 5(a)):
a =230, b=25.11, ET = 81,000, and q = 10.

With the coordinate system shown in figure 5(a), the equation of
the ellipse can be expressed either by

r=b\1 - x> sin%6 (E1)
or by
r = a\[i - P cosEB (E2)
where
K = 1 - @)2 (E3)

The general procedures given under Summary of Procedure are
followed.

(1) In order to determine the Fourier coefficients 2., bn,

of the following functions

2 N2 :Ei:
Fl = ;;—I 1l + <'r—> = an cos nf

0,2,k

and Cn

3 e
7o o o\ 4 L>=§ b, cos nd
2T <r 0,5,
5]
4 2
o= — vy £L> = c,, cos nb
3T EI r 0,2,%
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the following formulas can be used:

anz-———-y—-— -I‘—Vl+<r—') cos nf dd
n(l + BOn) 0 ET r
L ‘It/2 3 N2
by = ———— T l+<r—> cos nb 4o
n(l + GOn) 5 EI r

n/2
L 2
4 1g Te
= =1\/1 =—
Cn n(l T 5 D)L/; T + (r) cos nb db

where
n = 1 Sl n=20

0 if n#0

On

Performing the integration gives

2
a_
0 .8u334<EI)
2
o a®
0 15059(EI>

2
0.00 689(%)

0)

%

8y

3
- a-
‘ by =0 .77600<EI>

| 3
= &
by = -0 20669(EI)
\ b), = 0.01703 a3
h= = ET



NACA TN No. 1692

Q
Il

N
a
0 =0 '7168"<ﬁ>

ol
02 = -0 -25300 E—I

alL
0.0281 E—I

(2) In order to evaluate J and S the following integration
should be performed:

21 5 e
g= f—1+<1’— a6 = 2sby
EI r
0
27 e
r é i
S:O BT l+<r> do

Substituting in these equations gives

3
a_
J=14 .87580<EI>

S=5 .781&7(%)

Therefore

= 0.843350°

vy

Dl
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(3) When the values of a,, b, C s
into equation (69), the following constants are obtained:

J, and S are substituted

a
Koo = -0.00306 ET

K 0.034 a3
0 -333ﬁ

3
- a’
0 .00536<EI)

I

Kol

3
— i 8
Kro = 0 06867(EI>
3
K,y = '0‘77220(%>

8
a

3
- a~
0 .01067<EI)

Ku_oz

833
K), = 0.1027 =
K _01038£
by = 0-1033% 37

N
Q = 0.00280(%)
6 ah
-0 .06300 =
N
o.01118<i->
ET

N

O
f=
I
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(4) When these constants are substituted into equation (70), the
following equations are obtained:

Ap(t - 0.00306) + Ax(0.03433) + A)(-0.00536) = 0.00280a
Ay(0.06867) + Ax(-3t - 0.77221) + A)(0.10278) = -0.06300a

AO(-O.OlO67) + A2(O.10278) + 4),(-15t + 0.10338) = 0.01118a (E4)

where

g = BL_
qa3

The parameter t 1is nondimensional and is a measure of the flexibility
of the ring. In the present example t = 0.3.

(5) Solving the preceding simultaneous equations gives

Ay = 0.00503a
A, = 0.03778a
A = -0.00167a

(6) The radial deflection w is then given by the following
equation:

=
Il

Ay + Ay cos 20 + A) cos Lo

(0.00503 + 0.03778 cos 26 - 0.00167 cos 46)a (E5)

The values of w/a for various values of the angle 6 are given in
table 5 and also plotted in figure 2u.
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(7) The Fourier coefficient en can be obtained from the
following formula:

n/2
L 1
6. = ————— = cos nb adé
n n(} + ﬁon) JC T

Performing the integration gives

— l.o
eo = 5
op = Q09752
a
o) = -0.2?211

Substituting A, and e, into equation (73) gives
) fo = % = Aoeo - 1-5A262 = 705A.]+e)4 = -0.00001 = O

Therefore the results are checked.

(8) The coefficients f, and g, are obtained from equation (T7h4)
ag follows:

£, = 0.04188
f), = -0.00001
& = -0.00100
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(9) The angular displacement $ is, therefore,

=
1l

_%(fa = 82) gin 20 - -l]f(fh - g)_'_> gin 46

-0.02144 sin 26 - 0.00184 sin k46 (E6)

Values of ¢ are given in table 6 and are also plotted in figure 31.

(10) Finally equation (76) is used to calculate the bending-
moment distribution.

M= %[%2 - % + 2rw - g 2mhApan + 2{; nAka%§]

Since
2 E _ 2
-S-<2ﬂA0aO + - “Akal; = 0.00302a
]

and the bending-moment distribution if the change of geometric shape
of ring is neglected is

the bending-moment distribution M can be expressed as

M= M, + qrw - 0.00151qa"

or
Mo Yo + (E WS o.00151) (ET)
qa2 qa2 a a

Values of Mo/ﬁaz and M/qa2 are given in table T; M/qa2 is also

plotted in figure 38. The last term of equation (E7) is evidently the
correction needed when the change of geometric shape is considered. In
this particular case the correction term amounts to about 37 percent at
the point of maximum bending moment.
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Example 2

Given a ring as shown in figure 5(b), with the following data:
R=15, HE=9, q = 10, and EI = 84,375.

With the coordinate system as shown in figure S(b), the equations
for the ring outline are

k' cose+\l1-k'2 s1n°0 065 a

2ol Lo}

(E8)

1
oK L
sin 6 e

Poll ]
N

where

=

= |

The procedure as followed for example 1 is also used for example 2
by means of the following steps:

(1) The Fourier coefficients are

e
R
1.8552 6<ﬁ>

ao =
0.78 B
82 = 0.70339 Ei
e
ay = -0.09307| g7
by = 2.55170 R
0=*=" I
bo = 1.57561 B3
2= = ET
3
o B2
by, = -0 02956<EI>
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(2) The values of J

(3) The constants are

c2

Cl

and

e

3-585h2<

]
t—f.!l’;d
Hil+ H
Nl

2.831&7(

=
=

l

= o.159u7<

b=
H

S are
3
R-
16'0332<EI)

8.6832<£L)
ET

1.8464R"

Il
i
n
1
=
(@)
Ul
/\]\
l'xl
w
N—

20
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Ru
Q@ = 0-07993( 57
L
- 0. R”
Q =0 69251<EI)
0.1656 B!
Q) = 0.16565 T
(4) Introduce the nondimensional paremeter +t' = %%‘E% which is
equal to 2.5 for the present example. The following simultaneous
equations are obtained:
2.43893A - 0.26196A, - 0.047694) = 0.07993R
-0.5239445 - 9.81488A, - 0.81k174), = 0.69251R
-0.095384, - O.8ll+l"(A2 - b,o.ol+857Al+ = 0.16565R
(5) The solution of the foregoing equations is
Ay = 0.02503R
A, = -0.0T166R
Ay = -0 .00274R
(6) The radial deflection w is
w = (0.02503 - 0.07166 cos 26 - 0.00274 cos 40)R (E9)

Values of w/R are given in table 8 and also plotted against 6 in
figure 28.
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(7) The Fourier coefficients

In order to check the results, equation (73) is used.

(8) The coefficients f, and g, are then evaluated.

fo - &

o

Ty

&

&

en are obtained as

-0.00005 = 0O

-0.06173

0.00537

-0.00672

-0.02698

59

(9) The angular displacements can be expressed by the following

equation:

¢ = 0.02751 sin 26 - 0.00809 sin L6

Values of ¢ are given in table 9 and also plotted in figure 35.

(10) The bending-moment distribution is then given by the

following equation:

M

gR

2

|

aR

n

£y

28
R

W
R

- 0.01339

(E9)

(E10)
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Values of M/qR® and My [aR® are given in table 10 and also plotted
in figure 57 for comparison. The maximum error introduced by

neglecting the change of geometric shape of the ring is about 35 percent.

Method of Checking

A method of checking the final bending moment and displacements
is given. Example 2 is used for illustration.

Assume the results obtained from example 2 to be correct. Then

w = (0.02503 - 0.07166 cos 26 - 0.00274 cos 46)R
¢ = 0.02751 sin 26 - 0.00809 sin 46

- 0.01339

M _ M . ru
=2 RR

M
ar®
Using the bending-moment expression, the deflections u and v,
parallel to the x- and y-axis, respectively, can be determined from
the original shape of the ring. The deflected ring defined by the

displacements u and v should agree with the deflected ring defined
by w and

The equations for the determination of u and v are

C] C] .
ug =(/Z %% a COS @ ds + rg cos 6(/; g% ds (E11)
6 6
Vg = %%r& sin a ds - rg 8in 6 g% ds (E12)
x/2 x/2

Values of u and v, obtalned from equations (E1l) and (E12),
are given in table 11 and are also plotted in figure 58, together with
the deflections defined by w and ¢- The agreement is very good.
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TABLE 1.- FOURIER COEFFICIENTS ap, by, cy, AND e, FOR

VARTIOUS VALUES OF PARAMETER k

E‘anﬂly I, elliptical rings]

B\2
= 1-(;) 0 Qe 0.2 0.3 0.4
ag EI/a2> 1.00000 | 0.94934 | 0.89722 | 0.84334| 0.78735
ae(EI/a2> 0 -0.05002 | -0.10016 | -0.15059 | -0.20160
oy (51 /e?) 0 0.00066 | 0.00282 | 0.00689 | 0.01354
b, (EI /a3> 1.00000 | 0.92514% | 0.85052 | 0.77601| ©0.70146
be(EI /53) 0 -0.07308 |-0.14210 | -0.20669 | -0.26638
bu(EI /a3) 0 0.00177 | 0.00731 | 0.01703| 0.03151
cO(EI /alb 1.00000 [ 0.90187 [ 0.80749 | 0.71684 | 0.62988
co| EI /a“) 0 -0.09493 | -0.17944 | -0.25300 | -0.31494
¢, (BT [ak 0 0.00313 | 0.01251 | 0.02817| 0.05014
in
eo(a) 1.00000 [ 1.02722 | 1.05984 [ 1.09979| 1.15013
en(a) 0 0.02705 | 0.05899 [ 0.09752| 0.14519
eu(a) 0 -0.00018 |-0.00082 | -0.00217 | -0.00470

W
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TABLE 2.- FOURIER COEFFICIENTS a,, by, c,, AND e, FOR
VARIOUS VALUES OF PARAMETER k'
Er"amily II, rings formed by two semicircles
and two straight lines]
=2 0 0.2 0.4 0.6
R

aO(EI /R2> 1.00000 1.26456 1.54962 1.85526
ap (EI /R2> 0 0.19985 0.46057 0.78339
a h(EI /R2> 0 -0.03398 ~0.06703 -0.09307
b (EI /R3) 1.00000 1.42356 1.9375k 2.55170
b2<EI =) 0 0.33803 0.85649 1.57561
v, (E1/R3) 0 004495 -0.06725 -0.02956
co<EI /319 1.00000 1.60789 2.45013 3.58542
ool [¥) 0 0.50563 1.41205 2.83147
cu(EI /Rl*) 0 -0.05622 -0.03567 0.15947

eO(R) 1.00000 0.89756 0.83083 0.78538

ee(R) 0 -0.07617 -0.13812 -0.18829

e),(R) 0 0.01605 0.02677 0.03070



TABLE 3.- VALUES OF J AND S

Family I
.1 -(2)f 0 0.1 0.2 0.3 0.4
) b . : . .
J(EI /a3> 6.2832 5.81282 5.34397 4.87580 4okl
S(EI/a) 6.2832 6.12302 5.95614 5.78147 5.59762
%(-15) 1.0000 0.94933 0.89722 0.84335 0.78737
a
Family IT
k' =1 0 0.2 0.4 0.6
R
s(zz/r3) 6.2832 8.9452 12.1736 16.0332
S(EI/R) 6.2832 7.0832 7.8832 8.6832
§<i> 1.0000 1.2628 1.5442 1.846M
o
~NACA

c69T °"ON NI VOVN
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TABLE 4.- GRAPHICAL METHOD TO DETERMINE THE FOURIER

COEFFICIENTS ap, bp, cp, AND ep

ESee appendlx D-:l

65

Row Ttem Procedure Results at -
1|6 00 100 200 300 40° 50° [ 60° [ 70° | 80° 9%0°
2| r
3| =
b | cos 29
5 | cos 4o
6 | cos 68
7 | v/EI (2)/(3)
8 | (r/EI) cos 20 | (7) x (&)
9 | (r/BI) cos 48 | (7) x (5)

10 | (r/EI) cos 60 (7) x (6)

11 | r2/8x (2) x (7)

12 | (r2/EI) cos 20| (11) x (&)

13 | (x2/EI) cos 40| (11) x (5)

14 | (r2/EI) cos 66| (11) x (6)

15 | r3/E1 (D) (1)

16 | (r3/81) cos 20| (15) x (4)

17 | (r3/81) cos 49| (15) x (5)

18 | (r3/EI) cos 60| (15) x (6)

19 |1/r 1/(2)

20 | (1/r) cos 26 (19) x kh)

21 | (1/r) cos b8 | (19) x (5)

22 | (1/r) cos 68 (19) x (6)

23 | Arc length, S




TABLE 5.- RADIAL DEFLECTIONS w/a AT VARIOUS VALUES OF

E%amily T. = 0-3; b= o.3:

1 2 3 I 5 6 7

6 cos 26 cos 4 | 0.03778 x (2) | -0.00167 x (3) | 0.00503 w/a
(dee) (1) + (5) + (6)

0 1.00000 | 1.00000 0.03778 -0.00167 0.00503 0.0411k4
10 .93969 7660k .03550 -.00128 .00503 .03925
20 76604 .17365 02894 -.00029 .00503 .03368
30 .50000 | -.50000 .01889 .00084 .00503 02476
o) 17365 | -.93969 .00656 .00157 .00503 .01316
50 -.17365 | -.93969 -.00656 .00157 .00503 .00004
60 -.50000 | -.50000 -.01889 .00084 .00503 -.01302
T0 - . 76604 .17365 -.02894 -.00029 .00503 -.02420
80 -.93969 76604 -.03550 -.00128 .00503 -.03175
0 -1.00000 | 1.00000 -.03778 -.00167 .00503 -.034k42
~NAGA

98
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TABLE 6.- ANGULAR DISPLACEMENTS ¢ AT VARIOUS VALUES OF ©

E‘amily Fo b i v BB 0.3.-_-]

1 2 3 b 5 6 7
(dig) sin 26 sin 46 | -0.0214% x (2) | -0.00184 x (3) p =(£~Z<)1.; (5) (dgg)
0 0 0 0 0 0
10 .34202 64279 -.00733 -.00118 -.00851 -.k9
20 64279 .98481 -.01378 -.00181 -.01559 -.89
30 .86603 .86603 -.01857 -.00159 -.02016 -1.16
4o .98481 .34202 -.02111 -.00063 -.02174 -1.25
50 .98481 | -.34202 -.02111 .00063 -.02048 = I
60 .86603 | -.86603 -.01857 .00159 -.01698 -.97
70 64279 | -.98481 -.01378 .00181 -.01197 -.69
80 34202 | -.64279 -.00733 .00118 -.00615 -.35
0 0 0 0 0 0

269T °*ON NI VOVN

L9




TABLE 7 .- BENDING-MOMENT DISTRIBUTION

[Family I. ¥ =0.3; t =0.3; %a—lé = o.8h335]
1 2 3 L 5 6 T 8
5 /e g1 | Yo ¥ M1
IR e & e
= (3) - 0.84335 | = -é—(h) from table 5 = (5) + (1) - 0.00151
0 0.83666 0 .70000 -0.14335 -0.07168 0.0411k4 03442 -0.03877
10 .840k40 70639 -.13696 -.06848 .03925 .03299 -.03750
20 .85173 72545 -.11790 -.05895 .03368 .02869 -.03177
30 .86989 75675 -.08660 -.0k4330 .02476 .02154 -.02330
4o .89394 79904 -.04431 -.02216 .01316 .01176 -.01189
50 .92172 .84956 .00621 .00310 .00004 .00004 -.00163
60 .95038 .90322 .05987 0299k -.01302 .01237 .01606
70 97584 95226 .10891 05446 -.02420 .02362 .02933
80 .99365 .98725 .14390 .07195 -.03175 .03155 .03889
0 1.00000 1.00000 .15665 .07833 -.034k42 .03kk2 .0k240
“!ﬂ:’!”

89
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TABLE 8.- RADTAL DEFLECTIONS W/R AT VARIOUS VAIUES OF 6

EEamily II. k'=0.6; t' =2.5.]

1 2 3 L 5 7
(dig) cos 20 cos 49 [-0.07166 x (2)[-0.0027% x (3)| 0.02503 | X = (k) + (5) + (6)

0 1.00000 | 1.00000 -0.07166 -0.00274 0.02503 -0.04937
10 .93969 .T6604 -.06734 -.00210 02503 -.0khh1
20 LT660L4 .17365 -.05489 -.00048 02503 -.03034
30 .50000 | -.50000 -.03583 .00137 02503 -.01217
Lo .17365 | -.93969 ~.01244 .00257 02503 .01516
50 -.17365 | -.93969 0124k 00257 02503 .0Lo0k4
60 -.50000 | -.50000 .03583 .00137 .02503 06223
70 - . 76604 .17365 .05489 -.00048 .02503 L0794k
80 -.93969 LTE60L .06734 -.00210 .02503 .09027
90 -1.00000 | 1.00000 .07166 -.00274 .02503 .09395

Z69T *ON NI VOVN
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TABLE 9.- ANGULAR DISPLACEMENTS ¢ AT VARIOUS VALUES OF 6

—
t?amily IT. k'

—Noner 2.5:}

1 2 3 i 5 6 i
(dzg) sin 26 sin 48 | 0.02751 x (2) | -0.00809 x (3) ¢ = Ei;df)(S) (dgg)

0 0 0 0 0 0

10 .34202 64279 00941 -.00520 .00k21 2L
20 .64279 .98481 .01768 -.00797 .00971 .56
30 .86603 .86603 .02382 -.00701 .01681 .96
40 .98481 .34202 .02709 -.00277 .02432 1.39
50 .98481 -.34202 .02709 00277 .02986 el
60 .86603 -.86603 .02382 .00701 .03083 LT
70 .64279 -.98481 01768 .00797 .02565 el
80 .34202 -.64279 .00941 .00520 01461 .84
90 0 0 0 0 0

SNACA

oL
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TABLE 10 .- BENDING-MOMENT DISTRIBUTION

Eﬁ‘amily II. k' =0.6; t' = 2.5; %R—é = 1.81;61{]
1 2 3 b 5 6 7 8
. 5 (zf g1 | Yo ¥ ¥r M1
ws| F | G st Bty ) o *r°
= (3) - 1.8464 | = (1)/2 | from table 8 | = (2) x (6) | = (5) + (7) - 0.01339
0 1.60000 | 256000 0.71360 0.35680 -0.04937 -0.07899 0 .264k2
10 1.58545 | 2.51365 .66725 .33363 - .ObLk1 -.070L41 .24983
20 1.54252 | 2.37937 53297 26649 -.03034 -.04680 .20630
30 1.47356 | 2.17138 .32498 .16249 -.01217 -.01793 ~alshlak
40 1.38226 | 1.9106k4 06424 .03212 01516 .02096 .03969
50 1.27376 | 1.62246 -.22394 -.11197 .0L4ook .05100 -.07k436
60 1.15469 | 1.33331 - .51309 -.25655 .06223 .07186 -.19808
70 1.06418 | 1.13248 -.71392 -.35696 07944 .08454 -.28581
80 1.01542 | 1.03108 -.81532 -.40766 .09027 .09166 -.32939
0 1.00000 | 1.00000 - .84640 -.42320 .09395 .09395 - .3426k4
TNAGA
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TABIE 11.- DEFLECTIONS u AND v AT

[ﬁamily II. k' =0.6; t'

VARTIOUS VAIUES OF 6

_2.5)

il 2 3
(a08) u/R R

0 0 -0 .05064
10 .00001 -.0k6k9
20 .00L46 -.03553
30 .01549 -.02158
Lo .03270 -.00920
50 .05300 -.00182
60 .07165 0

70 .08L42L 0

80 .08726 0

% -08939 0
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Original

Deflected

Figure 1.- Initially curved bar in original and in
deflected shape.

0 X

Figure 3.- Angular rotation and

. radial deflection of a point on
Figure 2.- Forces and moments a ring after loading.

on a pressure-loaded ring.

“NACA,

Figure 4.- Coordinate system used in beam deflection.
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Family I.

(b) Family II.

Figure 5.- Shapes of rings used in numerical examples.
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Figure 6.- Fourier coefficients a, for various values of
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b, in terms of ad /Rl
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Figure 7.- Fourier coefficients b_ for various values of
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Figure 10.- Fourier coefficients a, for various values of

parameter k'. k' = H/R.
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Figure 11.- Fourier coefficients b, for various values of
parameter k'. k' = H/R.
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Figure 12.- Fourier coefficients Ch for various values of
parameter k'. k' = H/R.
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Figure 14.- Values of ] and S. Familyl. k% = 1 - <a9>d.
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Figure 21.- Values of A for various ratios of L. t' =EL L xr=y/R,
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2.- Values of w/a for various positions around ring from t= 0.20to t = 0.50.

t

-EL 1.
q 53

K2 = 1 -(2)2 = 0.1.

[—t = .20
———
t=.60
~510)
.20
0 10 20 30 40 50 60 70 80 90
8, deg
Figure 2

6
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Figure 23.- Values of w/a for various positions around ring from t = 0.20 to t = 0.50.
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Figure 24.~ Values of w/a for various positions around ring from t = 0.20 to t = 0.50.
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Figure 25.- Values of w/a for various positions around ring from t = 0.20 to t = 0.50.
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Figure 43.- Top view of test setup.

Figure 44.- General view of test setup.







NACA TN No. 1692 115

.} Supporting ring

)

Test ring
— )

459

Frame-

Weight

L |

Figure 45.- Schematic drawing of test setup.

Original ring

Figure 47.- Strain-gage locations.

NAC”A’_/

1,2,3,4... Division points before loading
1',2',3'4',,.Division points after loading

Figure 46.- Wooden board to register deflections.







NACA TN No. 1692

« KL R Bt BT

Figure 48.- Pressure bag used to load ring.
not be obtained.)

(Uniform load could

117






X Test results

e/
[e2]

269T °ON NI VOVN

.03 X =

.02 X~

w/a \

.01 -

-.01 =
-.02 =

™~ x

.03 |

0 10 20 30 40 50 60 70 80
6, deg
Figure 49.- Comparison of experimental values of w/a and values of w/a computed
by present method. a = 27.74 in.; b = 23.24 in.; EI = 105,410; q = 10.12 1b/in.;
b\2

2= - —) = Q2 :EI1_=
K4 = 1 (a 0.296; t =5 = 0.488.

61T



@, rad,

=.03
-.02
+ X——\J.\X
—
/X R
-.01 /// \\\‘X
//X X Test results \\
L~ X\
0 x/ [~
10 20 30 40 60 70 80 90

8, deg

Figure 50,- Comparison of experimental values of @ and values of @ computed
by the present method. a = 27.74 in.; b = 23.24 in.; EI = 105,410; q = 10.12 1b/in.;

2
2.1 -(RY - .y = EL
k2 = 1 (a) = 0.296; t =

1
— = 0.488.
293

0ctT

269T “ON NI YOVN




7
"
7
7
//‘
.05
g // / W
04 l / ,/
) 7
V] / /
/ P
.03
A A
02 b— ¥a
/
/
01 7
V.
M 1 9 2
q a2 -
-.01 =
X Test results /
7
-.02 v
/ L/
-.03 = +
/ / (
-4 — //
‘F |_—— 7]
.05 2 Calculated, considering deflections |
[ R R == — Calculated, neglecting deflections
I |
1-
e | |
0 10 20 30 40 50 60 70 80 90
e, deg
Figure 51.- Comparison of experimental values of 1(\1-1[- Lz and values of % lz computed
a a

by present method. a = 27.74 in.; b = 23.24 in.; EI = 105,410; q = 10.12 1b/in.;

N2
12 =1 -(?-) = 0.298; t=22 1 2 0488,
a

q a

»

269T °ON NI VOVN

et



w/R

.03

.02

201l

=01

-.02

L]

=

/x//x

X Test results

-.03

10 20 30 40

50

8, deg

70 80

Figure 52.- Comparison of experimental values of w/R and values of w/R computed
by present method. H =4.77 in.; R = 23.851in.; EI = 105,410; q = 10 1b/in.;

k'=H = 0.2 t'=Eq—I-1_= 0.794.
R =3

90

w

ol

c69T °"ON NI VOVN



@, rad,

—>

.016
_.._X_
012 - S N \X —
X
/ X Test results AN
004 X/ N
/
0 x/
0 10 20 30 40 50 60 70 80 90

8, deg

Figure 53.- Comparison of experimental values of @ and values of ¢ computed
by present method. H =4.77in.; R = 23.85in.; EI = 105,410; q = 10 1b/in.;

EI

':I——Iz . :—1_:
k'=3 =025 tr T o3 0.794.

69T °ON NI VOVN

€21



2T

Qg

]
WORJ
H
s T
== J
~
\\
\\
| 3o
S~ \\
'\\\
\\
N
£
\\
SN
\4,. N
N \
N
'\ \
S ™.
S <
N\
N
N
X Test results \\ \
1 S N
————————— Calculated, considering deflections Y \
=== —— Calculated, neglecting deflections N
* SN
W 3
KL
\\
10 20 30 40 50 60 70 80
6, deg
Figure 54.- Comparison of experimental values of % iz and values of % LZ computed
R R

by present method. H = 4.77 in.; R = 23.85in.; EI =105,410; q = 10 1b/in.;

k'=H=02 t1=EL 1l _pn794.
R G

269T °*ON NI VOVN




NACA TN No. 1692 125

Figure 55.- Increase of arc length due to angular displacements.

Figure 56.- Increase of arc length due to radial deflections.
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