80 research outputs found

    Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model

    No full text
    Four time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different ''snapshots'' of the control run climate. The radiative forcing - the increase in equivalent CO2 concentrations from 19852035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A - was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the ''between-experiment'' variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological. cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations

    Possible hominin footprints from the late Miocene (c. 5.7 Ma) of Crete?

    Get PDF
    © 2017 The Geologists' Association. We describe late Miocene tetrapod footprints (tracks) from the Trachilos locality in western Crete (Greece), which show hominin-like characteristics. They occur in an emergent horizon within an otherwise marginal marine succession of Messinian age (latest Miocene), dated to approximately 5.7 Ma (million years), just prior to the Messinian Salinity Crisis. The tracks indicate that the trackmaker lacked claws, and was bipedal, plantigrade, pentadactyl and strongly entaxonic. The impression of the large and non-divergent first digit (hallux) has a narrow neck and bulbous asymmetrical distal pad. The lateral digit impressions become progressively smaller so that the digital region as a whole is strongly asymmetrical. A large, rounded ball impression is associated with the hallux. Morphometric analysis shows the footprints to have outlines that are distinct from modern non-hominin primates and resemble those of hominins. The interpretation of these footprints is potentially controversial. The print morphology suggests that the trackmaker was a basal member of the clade Hominini, but as Crete is some distance outside the known geographical range of pre-Pleistocene hominins we must also entertain the possibility that they represent a hitherto unknown late Miocene primate that convergently evolved human-like foot anatomy

    Morphology of the earliest reconstructable tetrapod Parmastega aelidae.

    Get PDF
    The known diversity of tetrapods of the Devonian period has increased markedly in recent decades, but their fossil record consists mostly of tantalizing fragments1-15. The framework for interpreting the morphology and palaeobiology of Devonian tetrapods is dominated by the near complete fossils of Ichthyostega and Acanthostega; the less complete, but partly reconstructable, Ventastega and Tulerpeton have supporting roles2,4,16-34. All four of these genera date to the late Famennian age (about 365-359 million years ago)-they are 10 million years younger than the earliest known tetrapod fragments5,10, and nearly 30 million years younger than the oldest known tetrapod footprints35. Here we describe Parmastega aelidae gen. et sp. nov., a tetrapod from Russia dated to the earliest Famennian age (about 372 million years ago), represented by three-dimensional material that enables the reconstruction of the skull and shoulder girdle. The raised orbits, lateral line canals and weakly ossified postcranial skeleton of P. aelidae suggest a largely aquatic, surface-cruising animal. In Bayesian and parsimony-based phylogenetic analyses, the majority of trees place Parmastega as a sister group to all other tetrapods

    Chitosan in Plant Protection

    Get PDF
    Chitin and chitosan are naturally-occurring compounds that have potential in agriculture with regard to controlling plant diseases. These molecules were shown to display toxicity and inhibit fungal growth and development. They were reported to be active against viruses, bacteria and other pests. Fragments from chitin and chitosan are known to have eliciting activities leading to a variety of defense responses in host plants in response to microbial infections, including the accumulation of phytoalexins, pathogen-related (PR) proteins and proteinase inhibitors, lignin synthesis, and callose formation. Based on these and other proprieties that help strengthen host plant defenses, interest has been growing in using them in agricultural systems to reduce the negative impact of diseases on yield and quality of crops. This review recapitulates the properties and uses of chitin, chitosan, and their derivatives, and will focus on their applications and mechanisms of action during plant-pathogen interactions

    Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium: results and insights from instrumental data, documentary evidence and coupled climate models

    Full text link
    corecore