1,469 research outputs found

    A layered neural network with three-state neurons optimizing the mutual information

    Full text link
    The time evolution of an exactly solvable layered feedforward neural network with three-state neurons and optimizing the mutual information is studied for arbitrary synaptic noise (temperature). Detailed stationary temperature-capacity and capacity-activity phase diagrams are obtained. The model exhibits pattern retrieval, pattern-fluctuation retrieval and spin-glass phases. It is found that there is an improved performance in the form of both a larger critical capacity and information content compared with three-state Ising-type layered network models. Flow diagrams reveal that saddle-point solutions associated with fluctuation overlaps slow down considerably the flow of the network states towards the stable fixed-points.Comment: 17 pages Latex including 6 eps-figure

    Neural Substrates of Semantic Prospection – Evidence from the Dementias

    Get PDF
    The ability to envisage personally relevant events at a future time point represents an incredibly sophisticated cognitive endeavor and one that appears to be intimately linked to episodic memory integrity. Far less is known regarding the neurocognitive mechanisms underpinning the capacity to envisage non-personal future occurrences, known as semantic future thinking. Moreover the degree of overlap between the neural substrates supporting episodic and semantic forms of prospection remains unclear. To this end, we sought to investigate the capacity for episodic and semantic future thinking in Alzheimer’s disease (n = 15) and disease-matched behavioral-variant frontotemporal dementia (n = 15), neurodegenerative disorders characterized by significant medial temporal lobe (MTL) and frontal pathology. Participants completed an assessment of past and future thinking across personal (episodic) and non-personal (semantic) domains, as part of a larger neuropsychological battery investigating episodic and semantic processing, and their performance was contrasted with 20 age- and education-matched healthy older Controls. Participants underwent whole-brain T1-weighted structural imaging and voxel-based morphometry analysis was conducted to determine the relationship between gray matter integrity and episodic and semantic future thinking. Relative to Controls, both patient groups displayed marked future thinking impairments, extending across episodic and semantic domains. Analyses of covariance revealed that while episodic future thinking deficits could be explained solely in terms of episodic memory proficiency, semantic prospection deficits reflected the interplay between episodic and semantic processing. Distinct neural correlates emerged for each form of future simulation with differential involvement of prefrontal, lateral temporal, and medial temporal regions. Notably, the hippocampus was implicated irrespective of future thinking domain, with the suggestion of lateralization effects depending on the type of information being simulated. Whereas episodic future thinking related to right hippocampal integrity, semantic future thinking was found to relate to left hippocampal integrity. Our findings support previous observations of significant MTL involvement for semantic forms of prospection and point to distinct neurocognitive mechanisms which must be functional to support future-oriented forms of thought across personal and non-personal contexts
    • …
    corecore