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Abstract 
Human cognition is increasingly characterized as an emergent property of interactions 
among distributed, functionally specialized brain networks. We recently demonstrated 
that the antagonistic “default” and “dorsal attention” networks – subserving internally 
and externally directed cognition, respectively – are modulated by a third “frontoparietal 
control” network that flexibly couples with either network depending on task domain. 
However, little is known about the intrinsic functional architecture underlying this 
relationship. We used graph theory to analyze network properties of intrinsic functional 
connectivity within and between these three large-scale networks, and used task-based 
activation from three independent studies to identify reliable brain regions (“nodes”) of 
each network. We then examined pairwise connections (“edges”) between nodes, as 
defined by resting-state functional connectivity MRI. Importantly, we used a novel 
bootstrap resampling procedure to determine the reliability of graph edges. Further, we 
examined both full and partial correlations. As predicted, there was a higher degree of 
integration within each network than between networks. Critically, whereas the default 
and dorsal attention networks shared little positive connectivity with one another, the 
frontoparietal control network showed a high degree of between-network 
interconnectivity with each of these networks. Further, we identified nodes within the 
frontoparietal control network of three different types – default-aligned, dorsal attention-
aligned, and dual-aligned – that we propose play dissociable roles in mediating inter-
network communication. The results provide evidence consistent with the idea that the 
frontoparietal control network plays a pivotal gate-keeping role in goal-directed 
cognition, mediating the dynamic balance between default and dorsal attention networks. 
 
 
Keywords 
Bootstrap resampling, default mode, graph theory, partial correlation, resting-state 
functional connectivity MRI  
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A growing number of studies have shown that examining spontaneous low-frequency 

blood oxygenation level-dependent (BOLD) signal fluctuations across the human brain 

using fMRI reveals dissociable functional-anatomic networks (Biswal, Yetkin, Haughton, 

& Hyde, 1995; Fox & Raichle, 2007). These findings, in turn, have lead to significant 

advances in identifying the brain’s intrinsic functional architecture (e.g. Power et al., 

2011; Sepulcre et al., 2010; Yeo et al., 2011). Spatially distributed task-driven activity 

coheres to these intrinsic connectivity patterns (Laird et al., 2011; Smith et al., 2009), 

suggesting that intrinsic connectivity networks form meaningful neurocognitive networks 

(Bressler & Tognoli, 2006). Differentiation of intrinsic networks has revealed specialized 

information processing modules, but dynamic patterns of regional co-activation and inter-

network coupling are nonetheless necessary to support complex cognition (McIntosh, 

2000). As increasing numbers of dissociable and functionally specialized intrinsic 

networks are identified, characterizing connectivity among them is increasingly 

important. 

 Spatially distinct and functionally competitive, the “default” and “dorsal 

attention” networks subserve internally- and externally-directed cognition, respectively 

(Andrews-Hanna, 2012; Corbetta & Shulman, 2002; Fox et al., 2005). The default 

network includes medial prefrontal cortex, posterior cingulate cortex (pCC), superior and 

inferior frontal gyri, medial and lateral temporal lobes and the posterior extent of the 

inferior parietal lobule (pIPL) (Buckner, Andrews-Hanna, & Schacter, 2008). The dorsal 

attention network consists of dorsolateral prefrontal cortex (dlPFC), frontal eye fields, 

inferior precentral sulcus, superior occipital gyrus, middle temporal motion complex and 

superior parietal lobule (Corbetta & Shulman, 2002; Fox et al., 2005). We have 



 

 

4 

demonstrated that a third, spatially interposed, “frontoparietal control” network (Niendam 

et al., 2012; Vincent, Kahn, Snyder, Raichle, & Buckner, 2008) plays a role in goal-

directed cognition by flexibly coupling with either the default or dorsal attention network 

(Spreng & Schacter, 2011; Spreng, Stevens, Chamberlain, Gilmore, & Schacter, 2010). 

The frontoparietal control network includes lateral prefrontal cortex, precuneus (PCu), 

the anterior extent of the inferior parietal lobule (aIPL), medial superior prefrontal cortex 

(msPFC) and the anterior insula (aINS) (Niendam et al., 2012; Spreng et al., 2010; 

Vincent et al., 2008). Characterization of the frontoparietal control network is generally 

consistent with the “executive control” network (e.g., Seeley et al., 2007) and includes 

connectivity with the aINS and msPFC, regions associated with the salience network that 

have been implicated in modulating default network activity (Menon & Uddin, 2010; 

Seeley et al., 2007). Although frontoparietal control regions are anatomically well 

situated to couple with each of the other networks because they are spatially interposed 

between default and dorsal attention regions, little is known about the intrinsic functional 

architecture that facilitates this interaction. Here, we use network graph theory to 

characterize and quantify connectivity both within and between these three large-scale 

brain networks.  

 Graph theory provides powerful tools to characterize properties of functional 

brain networks (Rubinov & Sporns, 2010). This method examines pairwise connections 

(“edges”) between regions of interest (ROIs: “nodes”), elucidating both between- and 

within-network connectivity patterns. However, the validity of networks emerging from 

graph analysis is sensitive to node selection: functionally defined ROIs provide better 

estimates than structural atlases or arbitrarily defined sampling grids (Power et al., 2011; 
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Smith et al., 2011; Wig, Schlaggar, & Petersen, 2011; see also Sepulcre, Sabuncu & 

Johnson, 2012). We used reliable task-based activity from three independent samples 

(Spreng & Schacter, 2011; Spreng et al., 2010, R. N. Spreng, A. W. Gilmore,. & D. L. 

Schacter, unpublished observations) to identify default, dorsal attention and frontoparietal 

control network nodes. Importantly, reliable task-based activation in these studies was 

identified using the multivariate technique known as spatiotemporal partial least squares 

(PLS: Krishnan, Williams, McIntosh, & Abdi, 2011; McIntosh, Chau, & Protzner, 2004). 

Unlike other techniques that quantify activation in terms of task-related amplitude 

differences of the BOLD signal response on an independent voxel-wise basis (e.g. 

Dosenbach et al., 2007; Power et al., 2011), PLS identifies reliable whole-brain patterns 

of covariance related to different tasks. Thus, we defined the default, dorsal attention, and 

frontoparietal control network nodes as spatially distributed regions showing reliable, 

dissociable task-related patterns of covariance. We have previously demonstrated that, 

topographically, these task-defined networks are strikingly similar to corresponding 

intrinsic connectivity networks as identified by independent resting-state functional 

connectivity MRI (rsfcMRI) analyses (Spreng et al., 2010). 

We then used rsfcMRI and graph theory analyses to identify specific pairwise 

intrinsic connectivity patterns within and between these large-scale networks. Here we 

identified edges using both full and partial correlation methods. Partial correlations – i.e., 

correlations between given pairs of nodes adjusted by regressing out the timeseries of 

other nodes – are more robust to common sources of noise in resting datasets and are 

more sensitive than full correlation methods (Smith et al., 2011). Partial correlations can 
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also be used to distinguish direct from indirect functional connections, allowing us to 

characterize patterns of effective connectivity within and among intrinsic networks.  

Despite the increased sensitivity of partial correlation methods, discriminating 

reliable from spurious edges remains a significant challenge. Many published rsfcMRI 

studies have set arbitrary thresholds to remove potentially spurious edges (e.g. r >.20; 

10% connectivity). While this is an expedient and ubiquitous practice, such methods may 

remove weak, yet highly reliable, connections that may play a significant role in network 

interactivity. Here we used a bootstrap resampling procedure (Efron & Tibshirani, 1986), 

applied to our knowledge for the first time to rsfcMRI data, to determine reliable 

functional connections. This approach takes advantage of variability in our data to 

empirically determine reliable edges across a wider range of connectivity strengths than 

has been done with traditional thresholding methods. While we predicted little positive 

connectivity between dorsal attention and default networks, consistent with previous 

reports (e.g. Fox et al., 2005), we predicted that frontoparietal control network regions 

would show extensive functional coupling with both default and dorsal attention 

networks. If confirmed, this pattern would add critical evidence, supporting and 

extending our previous findings using task-related functional connectivity (Spreng & 

Schacter, 2011; Spreng et al., 2010), that the frontoparietal control network mediates 

goal-directed cognition by modulating the dynamic balance between default and dorsal 

attention networks. 

Methods 

Defining Network Nodes 
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Network nodes were defined by significant and reliable task-based regional 

activation within the default, dorsal attention and frontoparietal control networks across 

three independent samples totaling 63 young healthy adults (Sample 1: n = 20, Mage = 

21.3 ± 3.2y, Spreng et al., 2010; Sample 2: n = 18, Mage = 22.8 ± 2.4y, Spreng & 

Schacter, 2011; Sample 3: n = 25, Mage = 23.2 ± 2.3y, Spreng, R.N., Gilmore, A.W., & 

Schacter, D.L., unpublished observations). Scanning parameters and study details can be 

found in published reports (Spreng & Schacter, 2011; Spreng et al., 2010) or are available 

from the authors (Spreng et al., unpublished observations. Scanning parameters from for 

Sample 2 and 3 were identical). In brief, each of the networks comprised peak regions 

that were isolated in a multivariate spatio-temporal PLS (Krishnan et al., 2011) analysis 

of three tasks: autobiographical planning, visuospatial planning, and counting. The 

autobiographical planning task involved primarily internally directed cognition, with 

participants making personal plans in response to cued goals (e.g. freedom from debt). 

The visuospatial planning task was the Tower of London, which involves primarily 

externally directed cognition, as participants determine the minimum number of moves to 

solve a visual puzzle. The counting task involved the sequential counting of vowels in 

random letter sequences, a low-demand externally directed task. All stimuli were visually 

matched (see Spreng et al., 2010 for task details and stimuli figure). The autobiographical 

planning task engaged the default network while the visuospatial planning task engaged 

the dorsal attention network. The frontoparietal control network was engaged by both 

planning tasks, relative to counting. Spatially distributed task-based activity was 

topographically consistent with the default, dorsal attention and frontoparietal control 

intrinsic connectivity networks (Spreng et al., 2010). The composite network maps used 
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here were derived from the statistically significant activation maps for each network from 

a group analysis of each of the three independent samples (p < .005, no correction for 

multiple comparisons was required because the multivariate analysis was performed in a 

single analytic step; Krishnan et al., 2011). The composite network maps (default, dorsal 

attention, and frontoparietal control) represent the spatial overlap of significant activity 

within these networks from all three independent samples. Only significant voxels 

observed from all three studies were retained to functionally define the networks (right 

posterior inferior parietal lobule and right superior frontal gyrus (SFG) were significant in 

two out of three samples and were included here to maintain the bilateral composition of 

each network). Figure 1 (A-C) displays mean activity across the study samples. The 

composite networks are displayed on the fiducial surface map (population average 

landmark surface: PALS-B12) using CARET software (Van Essen, 2005). Each network 

node comprised a 5mm radius sphere centered on the mean peak maxima from the 

composite network map, depicted in Figure 1D. In the left hemisphere, the dorsal 

attention network ROI in dlPFC and the frontoparietal control network ROI in MFG 

(BA9) overlapped by a single voxel. This voxel was removed from both ROIs in all 

subsequent analysis. All other ROIs were spatially distinct. The integrity of the 

anatomical boundaries of the globus pallidus, thalamus and caudate was not preserved 

within our 5mm radius ROI spheres and were excluded from the analysis. However, in a 

preliminary graph analysis of 70 subjects using unequally sized ROIs, these subcortical 

structures formed their own module and did not impact the current pattern of results. All 

nodes, anatomical labels and their abbreviations, peak coordinates in Montréal 
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Neurological Institute (MNI) space, and task- and rest-based network affiliations are 

listed in Table 1. 

Defining Network Edges 

The network edges were defined by reliable resting-state full and partial 

correlations between the nodes. Resting-state BOLD data from 105 young healthy adult 

participants (54 women; Mage = 23.3 ± 2.2y; 43 participants were also used to identify 

task-based nodes (Spreng & Schacter, 2011; Spreng et al., unpublished observations)) 

were acquired with a 3.0T Siemens TimTrio MRI scanner with a 32-channel phased-

array whole-head coil. Anatomical scans were acquired using a T1-weighted multi-echo 

volumetric MRI sequence (TR = 2200ms; TE’s = 1.54, 3.36, 5.18, 7.01ms; 7°flip angle; 

1.2mm isotropic voxels). The BOLD functional scan was acquired with a T2*-weighted 

EPI pulse sequence (TR = 3000ms; TE = 30ms; 85° flip angle; 47 axial slices parallel to 

the plane of the anterior commissure–posterior commissure; 3.0mm isotropic voxels). Six 

minutes and 12 seconds of BOLD data (124 time-points) were acquired in a darkened 

room with participants’ eyes open. Thirty participants’ data were acquired prior to 

performing any task. The fMRI data were preprocessed using SPM2. The first 4 volumes 

were excluded from analyses to allow for T1-equilibration effects. Data were corrected 

for slice-dependent time shifts and for head motion within and across runs using a rigid 

body correction. Images were then spatially normalized to the standard space of the MNI 

atlas, yielding a volumetric time series resampled at 2mm cubic voxels. After standard 

preprocessing, resting-state data were subjected to additional preprocessing steps 

described previously (Van Dijk et al., 2010). First, a temporal low-pass filter was applied 

to the atlas-aligned BOLD data, retaining signal with frequency less than 0.08Hz. Data 
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were then spatially smoothed with a Gaussian kernel, full-width half-maximum of 6mm. 

Next, sources of variance of non-interest were removed from the data by regressing the 

following nuisance variables (in addition to first temporal derivative of each): the six 

motion parameters obtained during the motion correction procedure, the mean whole-

brain signal, the mean signal from the lateral ventricles, and the mean signal from a 

region within the deep cerebral white matter. Finally, the BOLD signal time-course for 

each participant was extracted from each of the 43 ROIs (defined above, Table 1).  

 The correlation coefficient for each ROI’s time-course with the time-course for 

every other ROI was first computed using Pearson’s product-moment formula. We then 

determined reliable positive full correlations, based on variability in our own data sample 

by implementing a bootstrapping procedure. We used the bias corrected-accelerated 

percentile method (Mathworks, 2011) to determine the 99.99% confidence interval for 

each correlation. A resampling rate of 10,000 was selected to ensure the reliability and 

stability of each confidence interval estimate (Carpenter & Bithell, 2000; Davidson & 

MacKinnon, 2000; Efron & Tibshirani, 1986). All reliable positive full correlations (i.e. 

lower-bound confidence intervals greater than zero) were retained.  

 As partial correlation methods have demonstrated enhanced sensitivity for edge 

detection in rsfcMRI data and allow for estimation of direct connections between nodes 

(Marrelec et al., 2006; Smith et al., 2011), we also constructed a partial correlation matrix 

in which all correlations were orthogonalized with regard to all other reliable positive full 

correlations. Specifically, we did not partial out the time-courses of all other 41 nodes. 

Partialling out variance from a large number of variables can result in mathematical 

irregularities that can distort the underlying patterns in the data. Instead, we partialled out 
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only the time-courses of other nodes with reliable (i.e. > 99.99% confidence) positive full 

correlations with either of the two nodes of interest for each pairwise comparison. This 

process reduced the possibility of distortion to the partial correlation matrix due to 

Berkson’s paradox (Berkson, 1946), which could occur if we were to partial out negative 

correlations introduced when regressing out global mean signal (Murphy, Birn, 

Handwerker, Jones, & Bandettini, 2009). Although controlling for 41 variables across 

120 time-points would not have rendered the matrix rank deficient, reducing the number 

of covariates permits a more stable estimate of direct connectivity due to the gain in 

degrees of freedom. The partial correlations were then bootstrapped following the same 

procedure as for the full correlations.  

Network Analysis 

Connectional modularity of the graph was determined using a hierarchical-

clustering algorithm applied to the full correlation matrix (average linkage method; 

Cluster v3.0, 1988, Stanford University). In Figure 2, the upper triangle of the correlation 

matrix contains the full correlations; the lower triangle contains the partial correlations. 

We then represented the network topology of the full and partial correlations in graphs 

generated using the Kamada-Kawai energy algorithm (1989), implemented in Pajek 

software (Figure 3 and 4; De Nooy et al., 2005). The Kamada-Kawai algorithm produces 

spring-embedded layouts based on minimizing the difference between geometric and 

pair-wise shortest path distances of nodes in the graph. The line-weight of the edges 

represents the magnitude of the correlation between nodes; node-size represents the 

magnitude of betweenness-centrality (Freeman 1977), a quantitative network metric that 

identifies the main “bottlenecks”. Betweenness-centrality was selected rather than other 
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network centrality measures because of its ability to explicitly detect main interconnector 

nodes between network and network modules (see Rubinov & Sporns, 2010). 

Results 

Reliable task-based recruitment of the three networks across the three independent 

samples is depicted in Figure 1 and the peak coordinates are listed in Table 1. Intrinsic 

connectivity among functionally defined ROIs from our previous study was high. Of all 

possible full correlations among these 43 nodes, 36.4% were determined to be reliable 

based on bootstrap-estimation of confidence intervals derived from our sample. Mean 

connectivity was r = .27 (SD = .12; range: .08–.64). For the partial correlations, the graph 

was sparser, with 12.1% of all possible connections determined to be reliable. Mean 

connectivity was r = .18 (SD = .09; range: .08–.54). The majority of the task-defined 

regions retained their network affiliation at rest, as determined by the clustering 

algorithm of the full correlations (Figure 2, Table 1). Some regions did shift in their 

network affiliation. The right SFG, engaged during task with regions of the default 

network, showed a greater intrinsic functional association with the frontoparietal control 

network. The dlPFC and dorsal anterior cingulate cortex, engaged during task with 

regions of the dorsal attention network, also showed a greater intrinsic functional 

association with the frontoparietal control network. The temporoparietal junction, 

engaged during task with regions of the frontoparietal control network, showed a greater 

intrinsic functional association with the default network. The PCu, engaged during task 

with regions of the frontoparietal control network, showed a greater intrinsic functional 

association with the default network. Notably, no regions shifted affiliation between the 

default and dorsal attention networks (See Table 1 for all regions’ network associations).  
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Next, we sought to assess the magnitude of the within- versus between- network 

correlations identified by the hierarchical clustering algorithm. While not independent 

from the original threshold connectivity matrix, this analysis provides additional 

information regarding the product of the hierarchical clustering algorithm. When we 

assessed Fisher’s r-to-z transformed magnitude of correlations within and between 

networks, the magnitude of within network connectivity was significantly greater than 

between network connectivity. This observation was true for both the full correlations 

(t(268) = 9.34, p < .001, equal variances not assumed; mean within network connectivity: 

r = .30, SD = .13, range = .08–.64, n = 247; mean between network connectivity: r = .19, 

SD = .07, range = .09–.48, n = 82) and the partial correlations (t(61) = 3.74, p < .001, 

equal variances not assumed; mean within network connectivity: pr = .19, SD = .09, 

range = .09–.54, n = 88; mean between network connectivity: pr = .14, SD = .05, range = 

.08–.27, n = 21). 

 A central goal of the current study was to examine patterns of intrinsic functional 

interactions among brain networks subserving the direction of goal-oriented cognition. 

Three distinct patterns emerged (Figure 3 and 4). First, within each network, there was a 

high degree of integration (Figures 2 and 3). Connections were sparser, however, when 

estimated by partial correlations (Figures 2 and 4). Second, the frontoparietal control 

network was functionally interposed between the dorsal attention and default networks, 

with extensive connectivity observed between frontoparietal control and both default and 

dorsal attention networks (Figures 3 and 4). The two nodes with the highest betweenness-

centrality in the graph of the full correlations were within the frontoparietal control 

network – bilateral middle frontal gyrus (MFG) Brodmann area (BA) 6. When examining 
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the partial correlations, the region with the greatest betweenness centrality was medial 

superior prefrontal cortex (msPFC), another region of the frontoparietal control network. 

The functional roles of both of these frontoparietal control network regions – MFG 

(BA6) and msPFC – are discussed below. 

 Third, analysis of both full and partial correlations revealed three dissociable 

types of nodes within the frontoparietal control network: dual-aligned, default-aligned, 

and dorsal attention-aligned nodes. Dual-aligned nodes showed connectivity with both 

the default and dorsal attention networks and included both MFG(BA6) regions, left 

MFG(BA9), left anterior insula (aINS), dorsal anterior cingulate cortex and msPFC. 

Regions directly connected to both the default and dorsal attention networks, as defined 

by partial correlations, were bilateral MFG(BA6) regions and the msPFC. Default-

aligned nodes of the frontoparietal control network included left aIPL and left 

rostrolateral prefrontal cortex, with direct connectivity of the left aIPL. Dorsal attention-

aligned nodes of the frontoparietal control network were bilateral dlPFC and right 

lateralized MFG(BA9), rostrolateral prefrontal cortex, aINS and aIPL. Direct 

connectivity with the dorsal attention-aligned nodes was specific to bilateral dlPFC, 

bilateral aINS and right aIPL. Although we highlight specific frontoparietal control 

network nodes here, all frontoparietal control nodes showing connectivity to default and 

dorsal attention network nodes are visible in Figure 2 (e.g. the msPFC frontoparietal 

control network region is directly connected, estimated by partial correlation, with the left 

frontal eye fields and left inferior precentral sulcus of the dorsal attention network and the 

left inferior frontal gyrus and left SFG of the default network). 

Discussion 



 

 

15 

 Complex cognition can be characterized as an emergent property of interactions 

among spatially distributed functional brain networks. Yet efforts to map network 

interactivity are just beginning and methodological challenges remain. Here we examined 

intrinsic connectivity within an established three-network model of goal-directed 

cognition (Spreng et al., 2010; Vincent et al., 2006). Intrinsic connectivity networks 

largely overlapped with the task-driven network identification, consistent with previous 

suggestions that intrinsic connectivity provides a latent functional architecture that may 

be readily engaged in the service of cognition (Laird et al., 2011; Raichle, 2010; Smith et 

al., 2009). Within-network connectivity was consistent with prior characterizations of the 

spatial extent of the default, dorsal attention, and frontoparietal control networks (e.g. 

Vincent et al., 2008) and with partial correlations within the default network (Fransson & 

Marrelec, 2008). Graph analyses of functional connections across the three networks 

demonstrated that the frontoparietal control network is functionally interposed between 

the dorsal attention and default networks. This feature is consistent with both its 

interposed regional neuroanatomy (Vincent et al., 2008) and its ability to flexibly couple 

with either the default or dorsal attention network depending on task domain (Spreng et 

al., 2010). Further examination of network connectivity, using full and partial 

correlations, revealed a differentiated structure among the frontoparietal control network 

nodes, with different nodes demonstrating preferred connectivity with either default, 

dorsal attention, or both networks. This connectivity pattern is consistent with the 

hypothesized roles of the frontoparietal control network in mediating internally- and 

externally-oriented, goal-directed cognition  (Smallwood, Brown, Baird, & Schooler, 

2012; Spreng et al., 2010; Spreng, 2012), and maintaining the dynamic balance between 
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default and dorsal attention networks (Doucet et al., 2011; Gao & Lin, 2012; see also 

Menon & Uddin, 2010). 

 Evidence suggests that patterns of intrinsic connectivity are sculpted by a history 

of repeated task-driven co-activation of brain regions, which in turn facilitates efficient 

coupling within task-relevant networks during future task performance. First, several 

studies have demonstrated that spontaneous resting-state BOLD fluctuations are subtly 

modulated by previous experience in task-relevant brain regions, and that the extent of 

modulation predicts future performance (Lewis, Baldassarre, Committeri, Romani, & 

Corbetta, 2009; Stevens, Buckner, & Schacter, 2010; Tambini, Ketz, & Davachi, 2010). 

Second, individual differences in intrinsic connectivity strength within task-relevant 

networks predict differences in performance (Baldassarre et al., 2012; Koyama et al., 

2011; Mennes et al., 2010; Zhu et al., 2012). Taken together, these findings suggest that 

the identification, characterization, and quantification of intrinsic neurocognitive 

networks can elucidate the link between experience, intrinsic functional architecture, and 

cognitive performance. 

 All regions included in the rsfcMRI analysis were identified by reliable task-

based engagement across three independent samples. While a majority of regions retained 

their network affiliation from task to rest, there was some realignment of nodes among 

the three networks. This change in network affiliation suggests that these particular 

regions may have a more flexible connectivity profile, dynamically altering connections 

and network allegiance based on task demands. Indeed, all such regions were on the 

boundary between networks in our intrinsic connectivity graph (ie, color transition zones; 

Figures 3 and 4), consistent with a flexible coupling hypothesis. One such connector 
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region between default and dorsal attention networks was the PCu. Recent neuroimaging 

evidence suggests a functional dissociation between PCu and posterior cingulate regions 

of medial parietal cortex (Leech, Kamourieh, Beckmann, & Sharp, 2011; Margulies et al., 

2009; Spreng et al., 2010). The PCu may be more flexibly engaged in executive control 

and is observed here to act as a cross-network connector. Among default network nodes, 

the PCu also demonstrated a relatively high degree of betweenness-centrality, further 

supporting its role as a network connector (Figure 3). By contrast, the posterior cingulate 

region, ventral and specific to perisplenial cortex, showed a relatively lower degree of 

betweenness-centrality, with dense functional connectivity primarily restricted to the 

default network. This dissociation of regions is likely due to our more sensitive task-

based definition of the default network as regions activated by an autobiographical task 

rather than relying on externally driven patterns of task-induced deactivation, which 

frequently include the PCu region as part of the default network. 

A region that was aligned with the default network in both our task-based and 

resting sate analyses, but has been consistently overlooked in the literature, is the left 

SFG. This region is functionally connected to most of the default network and shows 

direct connectivity with regions in medial prefrontal cortex and left inferior frontal gyrus. 

This region is also connected to a number of distributed frontoparietal control network 

structures, with direct connections to left MFG(BA6) and msPFC in our partial 

correlation analyses. We hypothesize that the left SFG may be a key region of the default 

network, critical for interacting with frontoparietal control regions in the lateral prefrontal 

cortex in support of internally focused, goal-directed cognition. The main connectivity 

route of the dorsal attention network to the frontoparietal control network might be via 
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the bilateral dlPFC regions. Identified in task data as part of the dorsal attention network, 

these regions showed a greater intrinsic association with the frontoparietal control 

network. Conversely, bilateral dlPFC regions showed no connectivity with the default 

network. These results suggest that the dlPFC may provide a lateral prefrontal extension 

of the dorsal attention network. Indeed, these specific dlPFC regions are the most 

antagonistic with the default network (Chai, Castanon, Ongur, & Whitfield-Gabrieli, 

2012; Hampson, Driesen, Roth, Gore, & Constable, 2010), while other regions of lateral 

prefrontal cortex show positive connectivity with the default network. 

 Greater connectivity within than between networks is a necessary product of the 

hierarchical clustering algorithm. It has broad implications, however, for retaining 

connectivity between networks in the analysis of graphs. Between-network connections 

will be omitted from the analysis of graphs disproportionately more than within-network 

connections as a threshold is raised arbitrarily. The bootstrap procedure, applied here for 

the first time to rsfcMRI, is an optimal procedure to identify weak yet highly reliable 

connections. Weak and reliable connections may be critical for understanding network 

level interactivity by providing a mechanism for “fine tuning” of neuronal signals. Low 

yet reliable connectivity could provide a means for information to enter or leave a 

modular system without dominating the information processing.  

 Partial correlations also provide a more specific estimate of connectivity in 

rsfcMRI analysis than full correlations by removing spurious correlations and providing 

an estimate of direct functional connectivity among network nodes (Smith et al., 2011). 

Our full correlation analyses provided broad evidence for an interacting network model 

of goal-directed cognition with the frontoparietal control network mediating a dynamic 
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balance between default and attention networks. Partial correlation results provide a 

much more sparse network structure, and a further refinement of this model, identifying a 

differentiated architecture of direct connectivity with frontoparietal regions that is 

consistent with the network’s purported role in goal-directed cognition. Specifically, 

partial correlations identified dual-aligned frontoparietal control regions that showed 

reliable functional interactions with both default and dorsal attention networks. These 

included bilateral posterior-lateral MFG(BA6) regions and msPFC. The interactivity of 

posterior MFG with both dorsal attention and default networks is consistent with the 

characterization of this region as a global hub using an anatomical automatic labeling 

atlas (He et al., 2009). However, the functional relevance of this connectivity is not well 

understood. Domain specific information from either the default or dorsal attention 

network may enter lateral prefrontal cortex through posterior MFG, and traverse the 

hierarchically organized caudal-rostral axis as contingent processing demands increase 

(Badre & D'Esposito, 2009; Christoff & Gabrieli, 2000).  

In addition to bilateral posterior MFG regions, the msPFC also showed dual 

network connectivity. This region overlaps with the pre-supplementary motor area, a 

region involved in motor planning based on internally generated thought; the most 

anterior aspect, closest to the msPFC ROI, is engaged in motor planning based on the 

contents of working memory (Chung, Han, Jeong, & Jack, 2005). Similarly, the posterior 

lateral MFG regions lie within premotor cortex. Lateral premotor cortex is involved in 

motor planning based on externally generated information (Grafton, Fagg, & Arbib, 

1998; Pesaran, Nelson, & Andersen, 2006). These regions, which are critical for 

implementation of goal-directed action, are directly (based on partial correlations) 
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connected to both default and dorsal attention networks and may provide a flexible 

control system for translating goal-directed cognitive processing into action.  

These partial correlation results suggest that the frontoparietal control network is 

well-positioned to modulate internally- and externally-focused cognitive processes and to 

interact with both dorsal attention and default networks to guide goal-directed behavior. 

Moreover, direct connectivity within the default and frontoparietal control networks, 

estimated here by partial correlations, aligns well with white matter tracts estimated by 

diffusion tractography (Greicius, Supekar, Menon, & Dougherty, 2009; Uddin, Supekar, 

Ryali, & Menon, 2011; van den Heuvel, Mandl, Kahn, & Hulshoff Pol, 2009). Thus 

partial rsfcMRI correlations may also provide a plausible neuroanatomical model of brain 

connectivity, which could in turn be utilized in a directed analysis of effective 

connectivity.  

Characterization of brain regions in terms of between versus within network 

connectedness may also have important implications for understanding functional deficits 

following brain injury. Early reports described the application of neuroimaging methods 

to mapping localized changes in brain structure and function to behavioural deficits in 

neurological populations (e.g. Corkin, 1998, 2002; Price and colleagues, 2001). Emergent 

methods allow us to look beyond localized changes to investigate changes in large-scale 

brain networks. For example, Gratton and colleagues (2012) demonstrated that localized 

damage to brain regions having high ‘connectedness’ disrupt activity within distributed 

networks and may underlie the extensive neuropsychological deficits often reported after 

localized brain damage. Bonnelle and colleagues (2012) recently reported that inhibitory 

behavioral deficits following brain injury were associated with white matter connectivity 
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between the aINS and msPFC and the functional suppression of default network activity. 

Thus, better characterization of network connectivity may be an important step towards 

improving diagnostic and prognostic capabilities in the treatment of brain injury and 

disease.   

Similar task-based ROI definition approaches have been reported (Dosenbach et 

al., 2007; Power et al., 2011) that provide more valid and precise delineation of network 

topology than anatomical atlases (Smith et al., 2011). While our approach to node 

definition differs markedly from that of others in some respects (cf., nodes associated 

with nine different behaviors and/or “signal types”; Power et al., 2011), our findings are 

novel and complement previous work. For example, while the frontoparietal control 

network we have defined here is broadly consistent with the “fronto-parietal system” as 

defined by Power et al. (2011), our characterization clearly encompasses a set of regions 

in lateral frontal, parietal, and temporal cortices that constitute an “unidentified 

subgraph” implicated in memory retrieval (Nelson et al., 2010; Power et al., 2011). Our 

results suggest that these regions are more likely involved in cognitive control operations, 

and specifically, in orienting the focus of attention to the external or internal 

environment, than memory retrieval per se. Our data are generally consistent with recent 

literature demonstrating extensive connectivity among subnetworks of putative ‘task-

positive’ brain regions, including the dorsal attention and frontoparietal control networks 

(Power et al., 2011). Dorsal attention-aligned nodes of the frontoparietal control network 

included the aINS, right aIPL and dlPFC. The right aINS has previously been identified 

as a critical node for suppressing default activity and re-allocating attentional resources to 

salient events (Sridharan, Levitin, & Menon, 2008). The default-aligned node, left aIPL, 
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has been observed to facilitate modulation (i.e. suppression) of the default network 

(Menon & Uddin, 2010). These processes likely work in tandem with dual-node 

frontoparietal control operations to transform goal-directed cognition into action. An 

important focus of future work will be to identify the relationship between various 

putative cognitive control systems, as defined by different researchers using 

complementary approaches, and to further improve and validate methods of identifying a 

comprehensive set of nodes representing functional areas of the brain (Wig et al., 2011).  

In conclusion, based on our analyses employing a graph theoretical approach 

combined with a novel method of evaluating reliability of network connectivity, the 

results we report here add new pieces to the puzzle of how large-scale brain networks 

interact with one another in service of higher-level cognition. First, we utilized a robust 

task based approach to identify functional regions of the brain. Second, our bootstrap 

resampling procedure allowed us to identify and retain weak yet highly reliable 

connections among network nodes in our graph analyses, which we argue may be critical 

for characterizing flexible between-network interactivity. Third, in addition to full 

correlations, we analyzed partial correlations among nodes in our network analyses, 

which provided additional and complimentary information about the specificity (i.e., 

direct vs. indirect connections) of connectivity among particular network nodes. This 

novel combination of techniques allowed us to identify highly interconnected nodes of 

three different types within the frontoparietal control network: default network-aligned, 

dorsal attention network-aligned, and dual network-aligned nodes. We propose that this 

differentiated intrinsic organization may be a fundamental property that underlies the 

frontoparietal control network’s pivotal role as a gate-keeper, transiently mediating goal-
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directed cognition by flexibly coupling with either the default or dorsal attention network, 

driving internally or externally directed cognition. 
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Figure 1. 
 

 
 
Figure 1: Left hemisphere lateral and medial surface for the task-based localization of 
regions comprising the (A) default, (B) dorsal attention and (C) frontoparietal control 
networks. (D) Regions of interest utilized in the resting state functional connectivity MRI 
analysis for the default (blue) dorsal attention (red) and frontoparietal control (green) 
networks. Colors designate task-based network affiliation. See Table 1 for abbreviations.
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Figure 2. 
 

 
 
Figure 2: Dendogram of the hierarchical cluster analysis of the full correlations and 
corresponding color-coded correlation matrix. The upper triangle of the matrix shows full 
correlations, the lower triangle shows partial correlations. Colors indicate magnitude of 
correlation. Prefixes l- = left hemisphere, r- = right hemisphere. See Table 1 for 
abbreviations. 
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Figure 3. 

 
 
Figure 3: Intrinsic connectivity graph within and between the default (blue), dorsal 
attention (red) and frontoparietal control (green) networks. Line-weights represent the 
magnitude of the correlation between nodes. Node size represents the magnitude of 
betweenness-centrality. Node color designates network membership determined by the 
cluster analysis of the full correlations. Prefixes l- = left hemisphere, r- = right 
hemisphere See Table 1 for abbreviations.  
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Figure 4. 
 

 
 
Figure 4: Intrinsic direct connectivity graph within and between the default (blue), dorsal 
attention (red) and frontoparietal control (green) networks. Line-weights represent the 
magnitude of the partial correlation between nodes. Node size represents the magnitude 
of betweenness-centrality. Node color designates network membership determined by the 
cluster analysis of the full correlations. Prefixes l- = left hemisphere, r- = right 
hemisphere See Table 1 for abbreviations.  
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Table 1. 

 
Table 1 Note: Network affiliation abbreviations are D = Default, A = Dorsal Attention, C = 
Frontoparietal Control, Hemis. = Hemisphere, BA = Brodmann area. Coordinates (x, y, z) are in MNI 
stereotaxic space.  
 


