113 research outputs found

    Intracellular nucleic acid delivery by the supercharged dengue virus capsid protein

    Get PDF
    © 2013 Freire et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Supercharged proteins are a recently identified class of proteins that have the ability to efficiently deliver functional macromolecules into mammalian cells. They were first developed as bioengineering products, but were later found in the human proteome. In this work, we show that this class of proteins with unusually high net positive charge is frequently found among viral structural proteins, more specifically among capsid proteins. In particular, the capsid proteins of viruses from the Flaviviridae family have all a very high net charge to molecular weight ratio (> +1.07/kDa), thus qualifying as supercharged proteins. This ubiquity raises the hypothesis that supercharged viral capsid proteins may have biological roles that arise from an intrinsic ability to penetrate cells. Dengue virus capsid protein was selected for a detailed experimental analysis. We showed that this protein is able to deliver functional nucleic acids into mammalian cells. The same result was obtained with two isolated domains of this protein, one of them being able to translocate lipid bilayers independently of endocytic routes. Nucleic acids such as siRNA and plasmids were delivered fully functional into cells. The results raise the possibility that the ability to penetrate cells is part of the native biological functions of some viral capsid proteins.This work was supported by Fundação para a Ciência e Tecnologia – Ministério da Educação e Ciência (FCT-MEC, Portugal) [PTDC/QUI-BIQ/112929/2009], by the European Union [projects FP7-PEOPLE IRSES (MEMPEPACROSS) and FP7-HEALTH-F3-2008-223414 (LEISHDRUG)], by the Spanish Ministry of Economy and Competitiveness (SAF2011-24899), the Generalitat de Catalunya (2009 SGR 492), by the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnoloógico (CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and the National Institute of Science and Technology in Dengue (INCT-Dengue). JMF also acknowledges FCT-MEC for Ph.D. fellowship SFRH/BD/70423/2010

    Characterization of two heparan sulphate-binding sites in the mycobacterial adhesin Hlp

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The histone-like Hlp protein is emerging as a key component in mycobacterial pathogenesis, being involved in the initial events of host colonization by interacting with laminin and glycosaminoglycans (GAGs). In the present study, nuclear magnetic resonance (NMR) was used to map the binding site(s) of Hlp to heparan sulfate and identify the nature of the amino acid residues directly involved in this interaction.</p> <p>Results</p> <p>The capacity of a panel of 30 mer synthetic peptides covering the full length of Hlp to bind to heparin/heparan sulfate was analyzed by solid phase assays, NMR, and affinity chromatography. An additional active region between the residues Gly46 and Ala60 was defined at the N-terminal domain of Hlp, expanding the previously defined heparin-binding site between Thr31 and Phe50. Additionally, the C-terminus, rich in Lys residues, was confirmed as another heparan sulfate binding region. The amino acids in Hlp identified as mediators in the interaction with heparan sulfate were Arg, Val, Ile, Lys, Phe, and Thr.</p> <p>Conclusion</p> <p>Our data indicate that Hlp interacts with heparan sulfate through two distinct regions of the protein. Both heparan sulfate-binding regions here defined are preserved in all mycobacterial Hlp homologues that have been sequenced, suggesting important but possibly divergent roles for this surface-exposed protein in both pathogenic and saprophic species.</p

    Non-reducible knee dislocation with interposition of the vastus medialis muscle

    Get PDF
    Irreducibility of the knee following complete dislocation is a rare event determined by the interposition of various capsulo-ligamentous structures in the joint space. Such cases often require urgent surgical treatment. We report the case of a healthy 70-year-old man with a sprain of the left knee that occurred after a sports trauma. The patient showed knee dislocation with multiple ligamentous injuries and articular block due to interposition of a portion of the vastus medialis muscle. After arthroscopic evaluation, we performed surgical treatment to free the muscle, regularize the medial meniscus and suture the posterior and medial capsule and ligaments; the cruciate ligaments were not treated. The most interesting aspect of the articular damage in this case was a wide detachment of the vastus medialis muscle with intra-articular dislocation. The decision to treat only the posterior lesions and allow the healing of the front ones by rehabilitation treatment was supported by full functional recovery and return to sports activity

    An in vitro assay to study the recruitment and substrate specificity of chromatin modifying enzymes

    Get PDF
    Post-translational modifications of core histones play an important role in regulating fundamental biological processes such as DNA repair, transcription and replication. In this paper, we describe a novel assay that allows sequential targeting of distinct histone modifying enzymes to immobilized nucleosomal templates using recombinant chimeric targeting molecules. The assay can be used to study the histone substrate specificity of chromatin modifying enzymes as well as whether and how certain enzymes affect each other's histone modifying activities. As such the assay can help to understand how a certain histone code is established and interpreted

    Plantar plate pathology is associated with erosive disease in the painful forefoot of patients with rheumatoid arthritis

    Get PDF
    Background: Disease-related foot pathology is recognised to have a significant impact on mobility and functional capacity in the majority of patients with rheumatoid arthritis (RA). The forefoot is widely affected and the metatarsophalangeal (MTP) joints are the most common site of symptoms. The plantar plates are the fibrocartilaginous distal attachments of the plantar fascia inserting into the five proximal phalanges. Together with the transverse metatarsal ligament they prevent splaying of the forefoot and subluxation of the MTP joints. Damage to the plantar plates is a plausible mechanism therefore, through which the forefoot presentation, commonly described as ‘walking on pebbles’, may develop in patients with RA. The aims of this study were to investigate the relationship between plantar plate pathology and clinical, biomechanical and plain radiography findings in the painful forefoot of patients with RA. Secondly, to compare plantar plate pathology at the symptomatic lesser (2nd-5th) MTP joints in patients with RA, with a group of healthy age and gender matched control subjects without foot pain. Methods: In 41 patients with RA and ten control subjects the forefoot was imaged using 3T MRI. Intermediate weighted fat-suppressed sagittal and short axis sequences were acquired through the lesser MTP joints. Images were read prospectively by two radiologists and consensus reached. Plantar plate pathology in patients with RA was compared with control subjects. Multivariable multilevel modelling was used to assess the association between plantar plate pathology and the clinical, biomechanical and plain radiography findings. Results: There were significant differences between control subjects and patients with RA in the presence of plantar plate pathology at the lesser MTP joints. No substantive or statistically significant associations were found between plantar plate pathology and clinical and biomechanical findings. The presence of plantar plate pathology was independently associated with an increase in the odds of erosion (OR = 52.50 [8.38–326.97], p < 0.001). Conclusion: The distribution of plantar plate pathology at the lesser MTP joints in healthy control subjects differs to that seen in patients with RA who have the consequence of inflammatory disease in the forefoot. Longitudinal follow-up is required to determine the mechanism and presentation of plantar plate pathology in the painful forefoot of patients with RA

    Structure and Behavior of Human α-Thrombin upon Ligand Recognition: Thermodynamic and Molecular Dynamics Studies

    Get PDF
    Thrombin is a serine proteinase that plays a fundamental role in coagulation. In this study, we address the effects of ligand site recognition by alpha-thrombin on conformation and energetics in solution. Active site occupation induces large changes in secondary structure content in thrombin as shown by circular dichroism. Thrombin-D-Phe-Pro-Arg-chloromethyl ketone (PPACK) exhibits enhanced equilibrium and kinetic stability compared to free thrombin, whose difference is rooted in the unfolding step. Small-angle X-ray scattering (SAXS) measurements in solution reveal an overall similarity in the molecular envelope of thrombin and thrombin-PPACK, which differs from the crystal structure of thrombin. Molecular dynamics simulations performed with thrombin lead to different conformations than the one observed in the crystal structure. These data shed light on the diversity of thrombin conformers not previously observed in crystal structures with distinguished catalytic and conformational behaviors, which might have direct implications on novel strategies to design direct thrombin inhibitors

    Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1β

    Get PDF
    Chemokines (chemotactic cytokines) comprise a large family of proteins that recruit and activate leukocytes, giving chemokines a major role in both immune response and inflammation-related diseases. The poxvirus-encoded viral CC chemokine inhibitor (vCCI) binds to many CC chemokines with high affinity, acting as a potent inhibitor of chemokine action. We have used heteronuclear multidimensional NMR to determine the structure of an orthopoxvirus vCCI in complex with a human CC chemokine, MIP-1β (macrophage inflammatory protein 1β). vCCI binds to the chemokine with 1:1 stoichiometry, forming a complex of 311 aa. vCCI uses residues from its β-sheet II to interact with a surface of MIP-1β that includes residues adjacent to its N terminus, as well as residues in the 20′s region and the 40′s loop. This structure reveals the strategy used by vCCI to tightly bind numerous chemokines while retaining selectivity for the CC chemokine subfamily

    Nucleosome accessibility governed by the dimer/tetramer interface

    Get PDF
    Nucleosomes are multi-component macromolecular assemblies which present a formidable obstacle to enzymatic activities that require access to the DNA, e.g. DNA and RNA polymerases. The mechanism and pathway(s) by which nucleosomes disassemble to allow DNA access are not well understood. Here we present evidence from single molecule FRET experiments for a previously uncharacterized intermediate structural state before H2A–H2B dimer release, which is characterized by an increased distance between H2B and the nucleosomal dyad. This suggests that the first step in nucleosome disassembly is the opening of the (H3–H4)2 tetramer/(H2A–H2B) dimer interface, followed by H2A–H2B dimer release from the DNA and, lastly, (H3–H4)2 tetramer removal. We estimate that the open intermediate state is populated at 0.2–3% under physiological conditions. This finding could have significant in vivo implications for factor-mediated histone removal and exchange, as well as for regulating DNA accessibility to the transcription and replication machinery

    The Effect of a ΔK280 Mutation on the Unfolded State of a Microtubule-Binding Repeat in Tau

    Get PDF
    Tau is a natively unfolded protein that forms intracellular aggregates in the brains of patients with Alzheimer's disease. To decipher the mechanism underlying the formation of tau aggregates, we developed a novel approach for constructing models of natively unfolded proteins. The method, energy-minima mapping and weighting (EMW), samples local energy minima of subsequences within a natively unfolded protein and then constructs ensembles from these energetically favorable conformations that are consistent with a given set of experimental data. A unique feature of the method is that it does not strive to generate a single ensemble that represents the unfolded state. Instead we construct a number of candidate ensembles, each of which agrees with a given set of experimental constraints, and focus our analysis on local structural features that are present in all of the independently generated ensembles. Using EMW we generated ensembles that are consistent with chemical shift measurements obtained on tau constructs. Thirty models were constructed for the second microtubule binding repeat (MTBR2) in wild-type (WT) tau and a ΔK280 mutant, which is found in some forms of frontotemporal dementia. By focusing on structural features that are preserved across all ensembles, we find that the aggregation-initiating sequence, PHF6*, prefers an extended conformation in both the WT and ΔK280 sequences. In addition, we find that residue K280 can adopt a loop/turn conformation in WT MTBR2 and that deletion of this residue, which can adopt nonextended states, leads to an increase in locally extended conformations near the C-terminus of PHF6*. As an increased preference for extended states near the C-terminus of PHF6* may facilitate the propagation of β-structure downstream from PHF6*, these results explain how a deletion at position 280 can promote the formation of tau aggregates
    corecore