26 research outputs found

    Drugs affecting the renin-angiotensin system and survival from cancer: a population based study of breast, colorectal and prostate cancer patient cohorts

    Get PDF
    BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) are commonly prescribed to the growing number of cancer patients (more than two million in the UK alone) often to treat hypertension. However, increased fatal cancer in ARB users in a randomized trial and increased breast cancer recurrence rates in ACEI users in a recent observational study have raised concerns about their safety in cancer patients. We investigated whether ACEI or ARB use after breast, colorectal or prostate cancer diagnosis was associated with increased risk of cancer-specific mortality. METHODS: Population-based cohorts of 9,814 breast, 4,762 colorectal and 6,339 prostate cancer patients newly diagnosed from 1998 to 2006 were identified in the UK Clinical Practice Research Datalink and confirmed by cancer registry linkage. Cancer-specific and all-cause mortality were identified from Office of National Statistics mortality data in 2011 (allowing up to 13 years of follow-up). A nested case–control analysis was conducted to compare ACEI/ARB use (from general practitioner prescription records) in cancer patients dying from cancer with up to five controls (not dying from cancer). Conditional logistic regression estimated the risk of cancer-specific, and all-cause, death in ACEI/ARB users compared with non-users. RESULTS: The main analysis included 1,435 breast, 1,511 colorectal and 1,184 prostate cancer-specific deaths (and 7,106 breast, 7,291 colorectal and 5,849 prostate cancer controls). There was no increase in cancer-specific mortality in patients using ARBs after diagnosis of breast (adjusted odds ratio (OR) = 1.06 95% confidence interval (CI) 0.84, 1.35), colorectal (adjusted OR = 0.82 95% CI 0.64, 1.07) or prostate cancer (adjusted OR = 0.79 95% CI 0.61, 1.03). There was also no evidence of increases in cancer-specific mortality with ACEI use for breast (adjusted OR = 1.06 95% CI 0.89, 1.27), colorectal (adjusted OR = 0.78 95% CI 0.66, 0.92) or prostate cancer (adjusted OR = 0.78 95% CI 0.66, 0.92). CONCLUSIONS: Overall, we found no evidence of increased risks of cancer-specific mortality in breast, colorectal or prostate cancer patients who used ACEI or ARBs after diagnosis. These results provide some reassurance that these medications are safe in patients diagnosed with these cancers

    How can medical schools contribute to bringing about health equity?

    Get PDF
    The role of medical schools is in a process of change. The World Health Organization has declared that they can no longer be ivory towers whose primary focus is the production of specialist physicians and cutting edge laboratory research. They must also be socially accountable and direct their activities towards meeting the priority health concerns of the areas they serve. The agenda must be set in partnership with stakeholders including governments, health care organisations and the public.<p></p> The concept of social accountability has particular resonance for the Bar Ilan Faculty of Medicine in the Galilee, Israel’s newest medical school, which was established with a purpose of reducing health inequities in the Region. As a way of exploring and understanding the issues, discussions were held with international experts in the field who visited the Galilee. A symposium involving representatives from other medical schools in Israel was also held to extend the discourse. Deliberations that took place are reported here.<p></p> The meaning of social accountability was discussed, and how it could be achieved. Three forms of action were the principal foci – augmentation of the medical curriculum, direct action through community engagement and political advocacy. A platform was set for taking the social accountability agenda forward, with the hope that it will impact on health inequalities in Israel and contribute to discussions elsewhere

    Protocol for the development of the international population registry for aphasia after stroke (I-PRAISE)

    Get PDF
    Background: We require high-quality information on the current burden, the types of therapy and resources available, methods of delivery, care pathways and long-term outcomes for people with aphasia. Aim: To document and inform international delivery of post-stroke aphasia treatment, to optimise recovery and reintegration of people with aphasia. Methods & Procedures: Multi-centre, prospective, non-randomised, open study, employing blinded outcome assessment, where appropriate, including people with post-stroke aphasia, able to attend for 30 minutes during the initial language assessment, at first contact with a speech and language therapist for assessment of aphasia at participating sites. There is no study-mandated intervention. Assessments will occur at baseline (first contact with a speech and language therapist for aphasia assessment), discharge from Speech and Language Therapy (SLT), 6 and 12-months post-stroke. Our primary outcome is changed from baseline in the Amsterdam Nijmegen Everyday Language Test (ANELT/Scenario Test for participants with severe verbal impairments) at 12-months post-stroke. Secondary outcomes at 6 and 12 months include the Therapy Outcome Measure (TOMS), Subjective Index of Physical and Social Outcome (SIPSO), Aphasia Severity Rating Scale (ASRS), Western Aphasia Battery Aphasia Quotient (WAB-AQ), stroke and aphasia quality of life scale (SAQoL-39), European Quality of Life Scale (EQ-5D), lesion description, General Health Questionnaire (GHQ-12), resource use, and satisfaction with therapy provision and success. We will collect demography, clinical data, and therapy content. Routine neuroimaging and medication administration records will be accessed where possible; imaging will be pseudonymised and transferred to a central reading centre. Data will be collected in a central registry. We will describe demography, stroke and aphasia profiles and therapies available. International individual participant data (IPD) meta-analyses will examine treatment responder rates based on minimal detectable change & clinically important changes from baseline for primary and secondary outcomes at 6 and 12 months. Multivariable meta-analyses will examine associations between demography, therapy, medication use and outcomes, considering service characteristics. Where feasible, costs associated with treatment will be reported. Where available, we will detail brain lesion size and site, and examine correlations with SLT and language outcome at 12 months. Conclusion: International differences in care, resource utilisation and outcomes will highlight avenues for further aphasia research, promote knowledge sharing and optimise aphasia rehabilitation delivery. IPD meta-analyses will enhance and expand understanding, identifying cost-effective and promising approaches to optimise rehabilitation to benefit people with aphasia

    Drugs affecting the renin-angiotensin system and survival from cancer: a population based study of breast, colorectal and prostate cancer patient cohorts

    No full text
    BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) are commonly prescribed to the growing number of cancer patients (more than two million in the UK alone) often to treat hypertension. However, increased fatal cancer in ARB users in a randomized trial and increased breast cancer recurrence rates in ACEI users in a recent observational study have raised concerns about their safety in cancer patients. We investigated whether ACEI or ARB use after breast, colorectal or prostate cancer diagnosis was associated with increased risk of cancer-specific mortality. METHODS: Population-based cohorts of 9,814 breast, 4,762 colorectal and 6,339 prostate cancer patients newly diagnosed from 1998 to 2006 were identified in the UK Clinical Practice Research Datalink and confirmed by cancer registry linkage. Cancer-specific and all-cause mortality were identified from Office of National Statistics mortality data in 2011 (allowing up to 13 years of follow-up). A nested case–control analysis was conducted to compare ACEI/ARB use (from general practitioner prescription records) in cancer patients dying from cancer with up to five controls (not dying from cancer). Conditional logistic regression estimated the risk of cancer-specific, and all-cause, death in ACEI/ARB users compared with non-users. RESULTS: The main analysis included 1,435 breast, 1,511 colorectal and 1,184 prostate cancer-specific deaths (and 7,106 breast, 7,291 colorectal and 5,849 prostate cancer controls). There was no increase in cancer-specific mortality in patients using ARBs after diagnosis of breast (adjusted odds ratio (OR) = 1.06 95% confidence interval (CI) 0.84, 1.35), colorectal (adjusted OR = 0.82 95% CI 0.64, 1.07) or prostate cancer (adjusted OR = 0.79 95% CI 0.61, 1.03). There was also no evidence of increases in cancer-specific mortality with ACEI use for breast (adjusted OR = 1.06 95% CI 0.89, 1.27), colorectal (adjusted OR = 0.78 95% CI 0.66, 0.92) or prostate cancer (adjusted OR = 0.78 95% CI 0.66, 0.92). CONCLUSIONS: Overall, we found no evidence of increased risks of cancer-specific mortality in breast, colorectal or prostate cancer patients who used ACEI or ARBs after diagnosis. These results provide some reassurance that these medications are safe in patients diagnosed with these cancers
    corecore