707 research outputs found

    Size-dependent nonlocal effects in plasmonic semiconductor particles

    Get PDF
    Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor materials: intrinsic InSb and nn-doped GaAs. Our results show that the semiconductors indeed display nonlocal effects, and that these effects are even more pronounced than in metals. In a 150nm150\mathrm{\,nm} InSb particle at 300K300\mathrm{\,K}, the LSP frequency is blueshifted 35%, which is orders of magnitude larger than the blueshift in a metal particle of the same size. This property, together with their tunability, makes semiconductors a promising platform for experiments in nonlocal effects.Comment: 7 pages, 3 figures, 1 table, corrected typos in text and figure

    Two-fluid hydrodynamic model for semiconductors

    Get PDF
    The hydrodynamic Drude model (HDM) has been successful in describing the optical properties of metallic nanostructures, but for semiconductors where several different kinds of charge carriers are present, an extended theory is required. We present a two-fluid hydrodynamic model for semiconductors containing electrons and holes (from thermal or external excitation) or light and heavy holes (in pp-doped materials). The two-fluid model predicts the existence of two longitudinal modes, an acoustic and an optical, whereas only an optical mode is present in the HDM. By extending nonlocal Mie theory to two plasmas, we are able to simulate the optical properties of two-fluid nanospheres and predict that the acoustic mode gives rise to peaks in the extinction spectra that are absent in the HDM.Comment: Accepted in PRB. 17 pages, 9 figures, 1 tabl

    Hydrodynamic acoustic plasmon resonances in semiconductor nanowires and their dimers

    Full text link
    The hydrodynamic Drude model known from metal plasmonics also applies to semiconductor structures of sizes in between single-particle quantum confinement and bulk. But contrary to metals, for semiconductors two or more types of plasma may have to be taken into account in order to properly describe their plasmonic properties. In this combined analytical and computational study, we explore predictions of the recently proposed two-fluid hydrodynamic Drude model for the optical properties of plasmonic semiconductor nanowires, in particular for thermally excited InSb nanowires. We focus on the low-frequency acoustic surface and bulk plasmon resonances that are unique fingerprints for this model and are yet to be observed. We identify these resonances in spectra for single nanowires based on analytical calculations, and they are in complete agreement with our numerical implementation of the model. For dimers of nanowires we predict substantial increase of the extinction cross section and field enhancement of the acoustic localized surface plasmon resonance, which makes its observation in dimers more likely.Comment: I would like to inform that Dr.Abbas Zarifi is the corresponding author of this pape

    Robustness of the far-field response of nonlocal plasmonic ensembles

    Get PDF
    Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles (NPs) are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size distribution. For a normal distribution of free-electron NPs, and within the simple nonlocal Hydrodynamic Drude Model (HDM), both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging. Size-variance effects tend however to conceal nonlocality to a lesser extent when the homogeneous size-dependent broadening of individual NPs is taken into account, either through a local size-dependent damping (SDD) model or through the Generalized Nonlocal Optical Response (GNOR) theory. The role of ensemble averaging is further explored in realistic distributions of noble-metal NPs, as encountered in experiments, while an analytical expression to evaluate the importance of inhomogeneous broadening through measurable quantities is developed. Our findings are independent of the specific nonclassical theory used, thus providing important insight into a large range of experiments on nanoscale and quantum plasmonics

    Nonequilibrium orientational patterns in two-component Langmuir monolayers

    Get PDF
    A model of a phase-separating two-component Langmuir monolayer in the presence of a photo-induced reaction interconvering two components is formulated. An interplay between phase separation, orientational ordering and treaction is found to lead to a variety of nonequilibrium self-organized patterns, both stationary and traveling. Examples of the patterns, observed in numerical simulations, include flowing droplets, traveling stripes, wave sources and vortex defects.Comment: Submitted to the Physical Review

    Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish

    Get PDF
    International audienceHeightened concern over endocrine-disrupting chemicals is driven by the hypothesis that they could reduce reproductive success and affect wildlife populations, but there is little evidence for this expectation. The pharmaceutical ethynylestradiol (EE(2)) is a potent endocrine modulator and is present in the aquatic environment at biologically active concentrations. To investigate impacts on reproductive success and mechanisms of disruption, we exposed breeding populations (n = 12) of zebrafish (Danio rerio) over multiple generations to environmentally relevant concentrations of EE(2). Life-long exposure to 5 ng/L EE(2) in the F, generation caused a 56% reduction in fecundity and complete population failure with no fertilization. Conversely, the same level of exposure for up to 40 days in mature adults in the parental F(0) generation had no impact on reproductive success. Infertility in the F, generation after life-long exposure to 5 ng/L EE(2) was due to disturbed sexual differentiation, with males having no functional testes and either undifferentiated or intersex gonads. These F, males also showed a reduced vitellogenic response when compared with F(0) males, indicating an acclimation to EE(2) exposure. Deputation studies found only a partial recovery in reproductive capacity after 5 months. Significantly, even though the F(0) males lacked functional testes, they showed male-pattern reproductive behavior, inducing the spawning act and competing with healthy males to disrupt fertilization. Endocrine disruption is therefore likely to affect breeding dynamics and reproductive success in group-spawning fish. Our findings raise major concerns about the population-level impacts for wildlife of long-term exposure to low concentrations of estrogenic endocrine disruptors

    From Women-Staffed to Women-Led: Gender and Leadership in Academic Libraries, 1974-2018.

    Full text link
    This article reviews post-1974 scholarly literature on women’s leadership in academic libraries, with the emphasis on the United States. The purpose of this synthesis is to highlight research areas and themes that have significantly expanded the profession’s knowledge about gender and its impact at the top administrative level. The article starts with a brief overview of theories of gender and leadership before tracing scholarship on the gendered career patterns singled out in Schiller’s work (1974). The article then focuses on additional issues related to gender and library administration, including leadership styles, perceptions of differences between male and female leaders, and the lack of diversity among academic library women directors
    corecore