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PACS 78.20.Bh – Theory, models, and numerical simulation
PACS 73.20.Mf – Collective excitations (including excitons, polarons, plasmons and other

charge-density excitations)
PACS 78.30.Fs – III-V and II-VI semiconductors

Abstract – Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit
spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these
nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor
materials: intrinsic InSb and n-doped GaAs. Our results show that the semiconductors indeed
display nonlocal effects, and that these effects are even more pronounced than in metals. In a
150 nm InSb particle at 300 K, the LSP frequency is blueshifted 35%, which is orders of magnitude
larger than the blueshift in a metal particle of the same size. This property, together with their
tunability, makes semiconductors a promising platform for experiments in nonlocal effects.

Copyright c© EPLA, 2017

Introduction. – It has been known for a while that the
Drude model for metals is only applicable when the geom-
etry is sufficiently large compared to intrinsic length scales
of the electron gas. When analyzing nanoscale structures,
the model becomes less accurate and a different or aug-
mented model becomes necessary. A model which has
successfully described metal structures on the nanoscale
is the hydrodynamic Drude model (HDM) [1–5], where
wave vector dependence is added to the Drude dielectric
function. Due to this, the model has been able to explain
observable nonlocal effects, such as longitudinal waves in-
side the metal and a size-dependent shift of the resonance
frequency of localized surface plasmons (LSP) [6].

However, the HDM is not necessarily restricted to met-
als, but could be relevant for other nanoscale structures
with a free-electron–like plasma as well. In this paper, we
consider the application of the HDM to semiconductors,
where the charge carriers are electrons and/or holes. This
leads to new predictions, different from the well-known in-
sights obtained by application of the usual Drude model
to semiconductors [7]. Among the most notable differ-
ences between metals and semiconductors are the densities

and the effective masses of the charge carriers. Metals
have large free-carrier concentrations and effective masses
roughly equal to that of the free electron. Semiconductors
on the other hand mostly have lower charge carrier den-
sities, and these furthermore depend strongly on doping
level and temperature. The effective masses will vary from
material to material, and usually the effective masses of
holes and electrons are different.

As briefly mentioned by Hanham et al. [8], these charac-
teristics can be exploited to investigate nonlocal effects in
ways that are not immediately possible in metals. By us-
ing semiconductors, the frequency of operation shifts from
the optical spectrum to the infrared or THz bands because
the plasma frequency, which depends on the charge carrier
density, is lower than in metals. As we predict here, the
size-dependent nonlocal effects will simultaneously mani-
fest themselves in larger structures than in metals, which
is good news for both fabrication and observation.

The optical properties of semiconductors have already
been described by many semiclassical and quantum-
mechanical models (see for example [9]). In partic-
ular, semiconductors are known to exhibit quantum
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confinement when the size of the structure is on the
nanometer scale, such as in quantum wells and dots [10].
But in some cases, the plasma description is more suitable.
An example is InSb which is characterized by an extremely
small band gap (Eg ∼ 0.17 eV) and a high charge carrier
density at room temperature. This material was used by
Hanham et al., as well as in earlier papers on plasmon-
ics [11–13], and in all cases the charge carriers were treated
as a plasma. Another example is doped semiconductors
where additional charge carriers have been supplied by the
donors or acceptors. Plasmonics in doped semiconductors
has additional advantages such as tunability [14], and plas-
monic experiments with both n- and p-doping have been
conducted [15–21].

In the region between semiconductors described by a
plasma model (such as the Drude model) and quantum
dots is a transition zone, where neither macroscopic nor
microscopic theories are ideal. This region, which is de-
fined by the size of the structures as well as the number of
charge carriers, has been the subject of both experimen-
tal [22–27] and theoretical [28–32] studies. In this paper
we will investigate semiconductor particles that are large
enough to contain sufficient charge carriers to be described
by a plasma model, yet small enough to display nonlocal
effects (implying that the Drude model becomes inaccu-
rate). We will focus on spherical particles of intrinsic InSb
and n-doped GaAs and use the HDM to calculate the op-
tical properties. To set a lower limit of our model, we use
the results from Zhang et al. [29] who estimated the onset
of quantum confinement effects in semiconductors using
first-principles calculations. Although they find no hard
transition, their results show that for a nanoparticle with a
radius of 2.5 nm and only a few charge carriers, the plasma
model is able to reproduce the DFT calculations reason-
ably well. But to make sure we are in the plasma regime,
we will only consider particles containing more than 50
charge carriers (and, as seen in the results section, radii
much larger than 2.5 nm).

We will mainly look at intraband transitions, as these
affect the properties of the plasma directly, while inter-
band transitions for simplicity are ignored. This is a rea-
sonable assumption as long as the energies considered are
smaller than the band gap. Another kind of excitations
characteristic of semiconductors is excitons, which give
rise to energy levels inside the band gap and modifications
to the conduction band edge. However, for materials with
a very narrow band gap, like InSb, the excitons are bound
so weakly that they usually can be neglected [9]. Similarly
for doped semiconductors, the screening effect of the high
charge carrier density weakens the excitonic bond. For the
materials that we study here, it is therefore a reasonable
approximation to ignore exciton effects.

Given the assumptions above, the hydrodynamic equa-
tions of motion can be rederived for charge carriers in
semiconductors, and in the next section, the key ex-
pressions in the model will be presented. These expres-
sions will then be applied to spherical nanoparticles, and

finally the results of the numerical simulations will be
discussed.

The model. –

Dielectric functions. The hydrodynamic Drude model
is characterized by a nonlocal longitudinal dielectric func-
tion [33,34]

εL(k, ω) = ε∞ − ω2
p

ω2 + iγω − β2k2 , (1)

where ωp is the plasma frequency, γ is the damping rate,
ε∞ is the background dielectric constant, and β is a pa-
rameter that describes the strength of nonlocality. In this
paper, ε∞ is chosen to be constant in ω, which is a good
approximation for energies smaller than the band gap.

For the degenerate electron gas in metals, β is directly
related to the Fermi velocity vF (see refs. [5,6]), but for
semiconductors, the parameter depends on several condi-
tions. The most obvious complication in semiconductors
compared to metals is the presence of more than one kind
of moving charge carrier, including electrons and heavy
and light holes. The electrons, however, have a much
smaller effective mass than the holes for a typical semi-
conductor, and therefore they will determine the optical
properties almost entirely. This means that the holes can
be ignored as a first approximation whenever electrons are
present as majority charge carriers, as they are in this pa-
per. Semiconductors also differ from metals in the sense
that changes in charge carrier densities can be created by
different means. If the electrons are thermally excited to
the conduction band, and the bands are assumed to be
parabolic, one can derive the expression for the dielectric
function using a simple quantum-mechanical model simi-
lar to the Lindhard model (see the Supporting Informa-
tion Supplementarymaterial.pdf). In this derivation,
β is given by

β2 =
3kBT

m∗
e

, (2)

where m∗
e is the effective mass of the electron, T is the

temperature, and kB is the Boltzmann constant. This
expression is only valid for low temperatures where the
Fermi-Dirac distribution can be approximated with the
Boltzmann distribution. If this is not the case, the value
of β can be found with numerical methods.

If the semiconductor instead is n-doped (and we neglect
electrons thermally excited from the valence band to the
conduction band), then β is given by

β2 =
3
5
v2

F =
3
5

�
2

m∗
e
2

(
3π2n

) 2
3 , (3)

where n is the electron density. Equation (3) can also
be used if the charge carriers are created by an external
energy source, e.g. a laser pulse that can excite carriers
across the band gap. This situation would of course be
complicated by the relaxation of the charge carriers over
time, and assumptions about a quasi-equilibrium would
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have to be made (and we will not consider this here). Note,
that the two expressions for β also can be found in [12].

The equations for the plasma frequency ωp and the
damping rate γ, however, are independent of the excita-
tion method and in all cases are given by

ω2
p =

ne2

ε0m∗
e

, (4)

γ =
e

m∗
e,condμe

, (5)

where μe is the mobility of the electron. Here m∗
e,cond is

the conductivity effective mass of the electron, and this is
in general different from m∗

e (which is called the density-
of-states effective mass). Only for isotropic and perfectly
parabolic bands are they identical [35].

For doped semiconductors, n is equal to the doping con-
centration Nd if the donors are completely ionized (which
is a good approximation at room temperature). For ther-
mally excited electrons in intrinsic semiconductors, n is
given by [35]

n = 2
(

2πkBT

h2

) 3
2

m
∗ 3

4
e m

∗ 3
4

h exp
(

− Eg

2kBT

)
, (6)

where m∗
h is the density-of-states effective mass of the

holes. The equations is valid when the Boltzmann dis-
tribution is accurate, but numerical methods can be used
to find n if this is not the case.

While the longitudinal dielectric function in eq. (1) is
nonlocal in the HDM, the transversal dielectric function
is local [33,34], i.e.

εT (ω) = ε∞ − ω2
p

ω2 + iγω
. (7)

The hydrodynamic equations. The two dielectric func-
tions together with Maxwell’s equations produce the fol-
lowing equations in real space [6,36,37]:

−∇ × ∇ × E +
ω2

c2 ε∞E = −iμ0ωJ, (8a)

β2

ω2 + iγω
∇ (∇ · J) + J =

iωε0ω
2
p

ω2 + iγω
E, (8b)

where the first is the classical wave equation, and the
second is the linearized nonlocal hydrodynamic equation.
These equations provide a relation between the electrical
field E and the induced current density J. In a local ap-
proximation (β ≈ 0), eq. (8b) would reduce to Ohm’s law,
i.e. J ∝ E with the constant of proportionality given by
the usual Drude conductivity σD = iωε0ω

2
p/(ω2 + iγω).

The relation between these equation and εL(k, ω) and
εT (ω) is easily seen for an infinite medium by using a
Fourier transform [6,33].

Equations (8a) and (8b) can be solved for various ge-
ometries when provided with the necessary boundary con-
ditions, using either analytical approaches or numerical

methods [5,34,37–40]. The continuities of E‖ and B‖
across the boundary are the natural first two boundary
conditions. However, an additional third boundary condi-
tion is needed in the case of the HDM. Under the assump-
tion of an infinite work function, the boundary condition
is J⊥ = 0, i.e. the charge carriers cannot escape the ma-
terial (see [6] for a discussion). This choice implies that
the spill-out of electrons at the interface is ignored [4].

The Mie coefficients. Given the boundary conditions,
the solutions for E and J are found for spherical sym-
metry. This was originally done by Mie for transversal
waves [41], and then later Ruppin added the longitudinal
component which is present for the HDM [42]. The final
result is contained in two transversal coefficients denoted
by aj

n and bj
n and one longitudinal coefficient denoted by

cj
n. Here n is an integer, and j indicates whether the field

is reflected from the sphere (j = r) or transmitted into the
sphere (j = t). The coefficient cr

n is zero as the surround-
ing medium is assumed to be a dielectric and unable to
support longitudinal waves.

However, because our additional boundary condition is
different from Ruppin’s, we will instead of his results use
the solution from David et al. [38] where the reflection
coefficients are given by

ar
n =

−jn(xD)[xT jn(xT )]′ + jn(xT )[xDjn(xD)]′

h
(1)
n (xD)[xT jn(xT )]′ − jn(xT )[xDh

(1)
n (xD)]′

, (9a)

br
n =
−εDjn(xD) (Δn+[xT jn(xT )]′)+εT jn(xT )[xDjn(xD)]′

εDh
(1)
n (xD) (Δn+[xT jn(xT )]′)−εT jn(xT )[xDh

(1)
n (xD)]′

.

(9b)

Here, xD = RkD =
√

εDRω/c and xT = RkT =√
εT Rω/c. The parameter εD is the dielectric constant

of the surrounding dielectric and εT is given by eq. (7).
The function jn is the spherical Bessel function of the first
kind, and h

(1)
n is the spherical Hankel function of the first

kind. The differentiation (denoted with the prime) is with
respect to the argument. The nonlocal parameter Δn is
given by [38]

Δn =
jn(xT )jn(xL)n(n + 1)

xLj′
n(xL)

(
εT

ε∞
− 1

)
, (10)

where xL = RkL and the longitudinal wave vector is [38]

kL =
1
β

√
ω2 + iγω − ω2

p

ε∞
. (11)

The coefficients an and bn are related to oscillations of the
magnetic and electric type, respectively. Note that the
expression for an is identical to the classical local solution,
while the expression for bn is not [43]. Setting Δn = 0,
however, reduces the bn coefficients to their classical local-
response counterparts as well.
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Table 1: Properties of GaAs and InSb. The intrinsic charge
carrier density is denoted by ni. The masses m∗

e and m∗
h for

InSb are taken from [44] and [45], respectively. For GaAs,
m∗

e and m∗
e,cond (which depends on the doping level Nd) are

from [46], and m∗
h is from [47]. Eg for InSb is taken from [48],

and μe and μh for GaAs are from [49]. The rest of the data are
taken from [50]. Note that for InSb, the conductivity effective
mass is assumed to be identical to the density-of-states effective
mass.

GaAs InSb InSb
(300 K) (300 K) (200 K)

ε∞ 10.9 15.7 15.7
Eg (eV) 1.42 0.17 0.20
ni ( cm−3) 2.1 × 106 1.9 × 1016 8.6 × 1014

μe ( cm2V−1s−1) 77000 151000
2900a

1100b

μh ( cm2V−1s−1) 850 1910
190a

80b

m∗
e/m0 0.0636 0.0118 0.0126

m∗
h/m0 0.53 0.48 0.44

m∗
e,cond/m0 0.0118 0.0126

0.0695a

0.101b

a
Nd = 1018 cm−3.

b
Nd = 1019 cm−3.

Once the ar
n and br

n coefficients are known, the extinc-
tion cross-section for single particles can be found with [43]

σext = − 2π

k2
D

∑
n=1

(2n + 1)Re(ar
n + br

n). (12)

Results. – Using eq. (12), the extinction spectra for
spherical semiconductor nanoparticles will now be deter-
mined. To begin with, we will look at intrinsic InSb with
thermally excited charge carriers. The data for InSb at
T = 300 K is given in table 1, and using eqs. (2), (4)
and (5) we find β = 1.07 × 106 m/s, ωp = 6.94 × 1013 s−1

and γ = 1.94 × 1012 s−1. From the plasma frequency it
is immediately seen that excitation of the plasmon must
take place in the infrared domain.

In fig. 1(a), the extinction cross section for an InSb
nanoparticle at T = 300 K in vacuum with R = 150 nm
is plotted. The dashed line is the local-response approxi-
mation obtained by setting Δn equal to zero in eq. (9b).
This curve only has a single visible peak which can be
recognized as the classical dipole plasmon peak with a fre-
quency close to ωdipole = ωp/(ε∞ + 2εD)1/2. Peaks from
higher-order poles also exist, but are too faint to see here.
The full line in the figure is the hydrodynamic solution,
and it differs from the classical local-response result in
several ways. The first thing we notice is that the dipole
peak is shifted towards higher frequencies, and secondly
we see that new peaks above the plasma frequency have
appeared. The new peaks and the blueshift are clear sig-
natures of nonlocality, and are well known phenomena in
metals [5,6,36,51,52]. There, the peaks are known to be

σ e
xt

 [n
m

2 ]
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(a)

1000
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(b)
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Hydrodynamic Model
Drude Model

E

Fig. 1: (Colour online) (a) Extinction spectrum for an InSb
nanoparticle in vacuum with R = 150 nm. Charge carriers
are thermally excited, and the temperature is 300 K. (b) Ex-
tinction spectrum for a GaAs nanoparticle in vacuum with
R = 50nm. The doping level is Nd = 1018 cm−3. The dashed
line is the local Drude model, and the full line is the HDM.
Material parameters can be found in table 1.

associated with confined bulk plasmons, and the blueshift
of the dipole peak is found to increase as the particle
gets smaller [5]. The existence of such nonlocal effects
in semiconductors has, to our knowledge, not been pre-
dicted before. Furthermore, the blueshift in fig. 1(a) is
significant, thus facilitating the experimental verification
by, for instance, systematically measuring the peak posi-
tion as a function of particle size.

By using doping, wide-gap semiconductors can also be
used as plasmonic materials. To investigate the predictions
of the HDM for doped semiconductors, we will consider
n-doped GaAs with a donor (e.g. silicon [15]) concentra-
tion of Nd = 1018 cm−3. The data for GaAs is shown in
table 1, and using eqs. (3), (4) and (5) we find β = 4.36×
105 m/s, ωp = 2.24 × 1014 s−1 and γ = 8.72 × 1012 s−1.
In fig. 1(b) the extinction spectrum for a doped GaAs
nanoparticle with R = 50 nm is plotted. Once again we
see oscillations above the plasma frequency and a clear
blueshift.

Although the results in fig. 1(a) and 1(b) appear promis-
ing, it should be noted that the amplitudes of the signals
are about a hundred times weaker than the signal from, for
example, a silver particle of the same size. Experimental
sensitivity is improving, however, and at least one group
has already measured signals of the same magnitude as
the ones predicted here [53].

For particles of intrinsic InSb, the temperature will have
a significant impact on the optical properties as it af-
fects the charge carrier density and thereby the resonance
frequency (as shown experimentally for a planar system
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Fig. 2: (Colour online) (a) Dipole resonance frequency as a
function of temperature for an InSb nanoparticle in vacuum
with R = 150 nm. (b) Dipole resonance frequency as a function
of doping level in a GaAs nanoparticle in vacuum with R =
50 nm. The dashed line is the local Drude model, and the full
line is the HDM. Material parameters can be found in table 1.

in [54]). To illustrate this, the temperature dependence of
the dipole resonance in an InSb nanoparticle is shown in
fig. 2(a). This time, to ensure that the results are accurate
at the higher temperatures, the Fermi-Dirac distribution is
used in the calculations instead of the Boltzmann distribu-
tion. As expected, the resonance frequency increases with
the temperature for both the local and nonlocal solutions.
This effect can be used in new plasmonic experiments
where the resonance frequency is controlled within a wide
range by varying the temperature.

Such a tunability also exists in doped semiconductors
where the resonance frequency instead is controlled by the
doping level (as shown experimentally in [23]). In fig. 2(b),
the dipole peak position in a GaAs nanoparticle is plot-
ted as a function of the donor concentration, and we see
how the resonance frequency goes up as the doping level
increases.

The appearance of nonlocal effects in semiconductors
is in a sense no surprise, as the model used is identical
to the one used for metals (except the expression for β).
What is really noteworthy is the magnitude of the relative
blueshift. For metals, this shift is typically in the order of
5–15% for particles of a few nm [55–58], while the blueshift
seen in fig. 1(a) is as large as 35% despite a radius of
150 nm. The strong blueshift is primarily explained by
the small effective electron mass in InSb, which according
to eq. (2) serves to increase β. Interestingly, the relative
blueshift is directly related to the non-classical fraction of
the energy [59].

To make further comparison with metal nanoparticles,
the blueshift relative to the plasma frequency is in fig. 3

R [nm]

Δ
ω
/ω
p

0001001011

0.1

0.2

0.3

0.4
InSb, T=200 K
InSb, T=300 K
GaAs, Nd=1018 cm-3

GaAs, Nd=1019 cm-3

Ag

Δω

Fig. 3: (Colour online) The nonlocal blueshift Δω relative to
the plasma frequency ωp, as a function of the nanosphere radius
R. Material parameters can be found in table 1. The lines are
cut off with a “×” at the left side where the particles contain
fewer than 50 electrons (being a metal, silver is cut off below
1nm).

shown as a function of particle radius for various materials.
The curves were calculated by subtracting the dipole fre-
quency in the local model from the dipole frequency in the
HDM and dividing the result by ωp. The red and orange
lines show the relative blueshift for InSb at T = 200 K
and 300 K, respectively (see the material parameters in
table 1). We see that the blueshift increases as the semi-
conductor particle becomes smaller, quite analogous to
what happens for noble metals [5]. But unlike for met-
als, the curves in fig. 3 also show that a lower temperature
gives larger blueshifts for all semiconductor particle sizes.
It has to be remembered, though, that the amplitude of
the signal also decreases when the temperature is lowered,
making detection harder. The “×” at the end of each line
indicates the radius where the particle contains 50 free
electrons (this was the chosen lower limit of the model).

The possibility of observing nonlocal effects in semicon-
ductors was mentioned by Hanham et al. in [8] where they
studied the optical response of InSb disks with diameters
of 20 μm. However, for the simulation of their results they
only used the local Drude model. From fig. 3, we now
see that this was justified for individual InSb particles at
300 K, as the nonlocal blueshift is negligible for radii larger
than 1 μm.

The blue and pale blue lines in fig. 3 show the blueshifts
for GaAs particles with doping levels of 1018 cm−3 and
1019 cm−3, respectively. Although the blueshifts are
smaller than for InSb, the tendency is the same.

Finally, the black line in fig. 3 shows the blueshift for
silver particles with the parameters β = 1.08 × 106 m/s,
ωp = 1.36 × 1016 s−1 and γ = 3.80 × 1013 s−1 [6], and
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where ε∞(ω) is found using the method from [38] and data
from [60]. We here see that the relative blueshift is smaller
than for the semiconductors and occurs for much smaller
particles.

The hydrodynamic model is simple both conceptually
and computationally, and yet it has showcased an extraor-
dinary predictive power for the optical properties of met-
als. Semiconductors, however, represent a new group of
materials were the HDM has not yet been tested, and the
situation might be more complicated. As mentioned in
the introduction, semiconductors may support excitons,
an effect we have ignored here. Another phenomenon rel-
evant for especially binary and ternary semiconductors is
optical phonons which may couple to the plasmon if the
resonance frequency is in the same region. This has been
investigated for InSb [61,62] and GaAs [18,63], and the
mechanism could be included in the dielectric function as
an extra term (as is done in [12]).

For InSb there is yet another effect that may have to be
taken into account, namely the presence of a space charge
layer. This charge carrier depleted layer stretching a few
hundred angstrom into the material has been discussed in
earlier papers [12,64–66]. Such a layer would be significant
for the optical properties of the InSb particle, and the
question of how it would affect the nonlocal effects is still
to be answered.

The size-dependent nonlocal effects which have been in-
vestigated here would be relevant when making experi-
mental predictions for semiconductor nanostructures in
general. But semiconductors could also be used specifically
for research in nonlocal effects, as the required particle
sizes are much larger in semiconductors than in metals.
This will be an advantage in experimental studies where
the extremely small sizes of metal nanoparticles has been
a challenge. Another material that also permits observa-
tion of nonlocality in larger structures than with metals
is graphene. Indeed, blueshifts in arm-chair–terminated
graphene nanoflakes could be identified as hydrodynamic
nonlocal blueshifts [67]. Very recently, tunable nonlo-
cal response of graphene has been observed in near-field
imaging experiments [68]. Both graphene and semicon-
ductors are therefore suited for research in nonlocality, as
they allow the experimentalists to explore larger structures
and still be able to see deviations from the local response
model.

Conclusions. – We have shown that size-dependent
nonlocal effects are present in semiconductor particles that
contain enough charge carriers to be described by the hy-
drodynamic Drude model. These particles are too big to
behave as quantum dots, yet too small for bulk theory
to apply. Moreover, we find that the blueshift relative to
the plasma frequency is much larger than what is seen in
metals and that it occurs in larger particles. This find-
ing makes semiconductors interesting and suitable can-
didates for further experimental explorations of nonlocal
electrodynamic effects: if the required structures can be

upscaled, then the fabrication is correspondingly simpli-
fied, and investigations of new, more complex geometries
become realistic.

In addition, semiconductors provide the possibility of
tuning the optical response by changing the charge carrier
density, for instance by temperature control and doping
as investigated here. If nanoscale semiconductor struc-
tures in the future will be used in new plasmonic ex-
periments and devices, proper modeling of the materials
becomes crucial. Based on our results from the hydrody-
namic model, we have clarified when nonlocality is not
important and the Drude model provides sufficient de-
scription, but also when nonlocal effects should be taken
into account.
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