391 research outputs found

    Altered Velocity Processing in Schizophrenia during Pursuit Eye Tracking

    Get PDF
    Smooth pursuit eye movements (SPEM) are needed to keep the retinal image of slowly moving objects within the fovea. Depending on the task, about 50%–80% of patients with schizophrenia have difficulties in maintaining SPEM. We designed a study that comprised different target velocities as well as testing for internal (extraretinal) guidance of SPEM in the absence of a visual target. We applied event-related fMRI by presenting four velocities (5, 10, 15, 20°/s) both with and without intervals of target blanking. 17 patients and 16 healthy participants were included. Eye movements were registered during scanning sessions. Statistical analysis included mixed ANOVAs and regression analyses of the target velocity on the Blood Oxygen Level Dependency (BOLD) signal. The main effect group and the interaction of velocity×group revealed reduced activation in V5 and putamen but increased activation of cerebellar regions in patients. Regression analysis showed that activation in supplementary eye field, putamen, and cerebellum was not correlated to target velocity in patients in contrast to controls. Furthermore, activation in V5 and in intraparietal sulcus (putative LIP) bilaterally was less strongly correlated to target velocity in patients than controls. Altered correlation of target velocity and neural activation in the cortical network supporting SPEM (V5, SEF, LIP, putamen) implies impaired transformation of the visual motion signal into an adequate motor command in patients. Cerebellar regions seem to be involved in compensatory mechanisms although cerebellar activity in patients was not related to target velocity

    Microbial sphingomyelinase induces RhoA-mediated reorganization of the apical brush border membrane and is protective against invasion

    Get PDF
    The apical brush border membrane (BBM) of intestinal epithelial cells forms a highly structured and dynamic environmental interface that serves to regulate cellular physiology and block invasion by intestinal microbes and their products. How the BBM dynamically responds to pathogenic and commensal bacterial signals can define intestinal homeostasis and immune function. We previously found that in model intestinal epithelium, the conversion of apical membrane sphingomyelin to ceramide by exogenous bacterial sphingomyelinase (SMase) protected against the endocytosis and toxicity of cholera toxin. Here we elucidate a mechanism of action by showing that SMase induces a dramatic, reversible, RhoA-dependent alteration of the apical cortical F-actin network. Accumulation of apical membrane ceramide is necessary and sufficient to induce the actin phenotype, and this coincides with altered membrane structure and augmented innate immune function as evidenced by resistance to invasion by Salmonella

    The Effects of Cholera Toxin on Cellular Energy Metabolism

    Get PDF
    Multianalyte microphysiometry, a real-time instrument for simultaneous measurement of metabolic analytes in a microfluidic environment, was used to explore the effects of cholera toxin (CTx). Upon exposure of CTx to PC-12 cells, anaerobic respiration was triggered, measured as increases in acid and lactate production and a decrease in the oxygen uptake. We believe the responses observed are due to a CTx-induced activation of adenylate cyclase, increasing cAMP production and resulting in a switch to anaerobic respiration. Inhibitors (H-89, brefeldin A) and stimulators (forskolin) of cAMP were employed to modulate the CTx-induced cAMP responses. The results of this study show the utility of multianalyte microphysiometry to quantitatively determine the dynamic metabolic effects of toxins and affected pathways

    Gas phase characterization of the noncovalent quaternary structure of Cholera toxin and the Cholera toxin B subunit pentamer

    Get PDF
    Cholera toxin (CTx) is an AB5 cytotonic protein that has medical relevance in cholera and as a novel mucosal adjuvant. Here, we report an analysis of the noncovalent homopentameric complex of CTx B chain (CTx B5) using electrospray ionization triple quadrupole mass spectrometry and tandem mass spectrometry and the analysis of the noncovalent hexameric holotoxin usingelectrospray ionization time-of-flight mass spectrometry over a range of pH values that correlate with those encountered by this toxin after cellular uptake. We show that noncovalent interactions within the toxin assemblies were maintained under both acidic and neutral conditions in the gas phase. However, unlike the related Escherichia coli Shiga-like toxin B5 pentamer (SLTx B), the CTx B5 pentamer was stable at low pH, indicating that additional interactions must be present within the latter. Structural comparison of the CTx B monomer interface reveals an additional α-helix that is absent in the SLTx B monomer. In silico energy calculations support interactions between this helix and the adjacent monomer. These data provide insight into the apparent stabilization of CTx B relative to SLTx B

    Identification of host cell factors required for intoxication through use of modified cholera toxin

    Get PDF
    We describe a novel labeling strategy to site-specifically attach fluorophores, biotin, and proteins to the C terminus of the A1 subunit (CTA1) of cholera toxin (CTx) in an otherwise correctly assembled and active CTx complex. Using a biotinylated N-linked glycosylation reporter peptide attached to CTA1, we provide direct evidence that ∼12% of the internalized CTA1 pool reaches the ER. We also explored the sortase labeling method to attach the catalytic subunit of diphtheria toxin as a toxic warhead to CTA1, thus converting CTx into a cytolethal toxin. This new toxin conjugate enabled us to conduct a genetic screen in human cells, which identified ST3GAL5, SLC35A2, B3GALT4, UGCG, and ELF4 as genes essential for CTx intoxication. The first four encode proteins involved in the synthesis of gangliosides, which are known receptors for CTx. Identification and isolation of the ST3GAL5 and SLC35A2 mutant clonal cells uncover a previously unappreciated differential contribution of gangliosides to intoxication by CTx.Fundação para a Ciência e a Tecnologia (Fellowship

    The Chicken Yolk Sac IgY Receptor, a Mammalian Mannose Receptor Family Member, Transcytoses IgY across Polarized Epithelial Cells

    Get PDF
    In mammals the transfer of passive immunity from mother to young is mediated by the MHC-related receptor FcRn, which transports maternal IgG across epithelial cell barriers. In birds, maternal IgY in egg yolk is transferred across the yolk sac to passively immunize chicks during gestation and early independent life. The chicken yolk sac IgY receptor (FcRY) is the ortholog of the mammalian phospholipase A2 receptor, a mannose receptor family member, rather than an FcRn or MHC homolog. FcRn and FcRY both exhibit ligand binding at the acidic pH of endosomes and ligand release at the slightly basic pH of blood. Here we show that FcRY expressed in polarized mammalian epithelial cells functioned in endocytosis, bidirectional transcytosis, and recycling of chicken FcY/IgY. Confocal immunofluorescence studies demonstrated that IgY binding and endocytosis occurred at acidic but not basic pH, mimicking pH-dependent uptake of IgG by FcRn. Colocalization studies showed FcRY-mediated internalization via clathrin-coated pits and transport involving early and recycling endosomes. Disruption of microtubules partially inhibited apical-to-basolateral and basolateral-to-apical transcytosis, but not recycling, suggesting the use of different trafficking machinery. Our results represent the first cell biological evidence of functional equivalence between FcRY and FcRn and provide an intriguing example of how evolution can give rise to systems in which similar biological requirements in different species are satisfied utilizing distinct protein folds

    IRE1β negatively regulates IRE1α signaling in response to endoplasmic reticulum stress

    Get PDF
    IRE1β is an ER stress sensor uniquely expressed in epithelial cells lining mucosal surfaces. Here, we show that intestinal epithelial cells expressing IRE1β have an attenuated unfolded protein response to ER stress. When modeled in HEK293 cells and with purified protein, IRE1β diminishes expression and inhibits signaling by the closely related stress sensor IRE1α. IRE1β can assemble with and inhibit IRE1α to suppress stress-induced XBP1 splicing, a key mediator of the unfolded protein response. In comparison to IRE1α, IRE1β has relatively weak XBP1 splicing activity, largely explained by a nonconserved amino acid in the kinase domain active site that impairs its phosphorylation and restricts oligomerization. This enables IRE1β to act as a dominant-negative suppressor of IRE1α and affect how barrier epithelial cells manage the response to stress at the host–environment interface

    General psychopathology links burden of recent life events and psychotic symptoms in a network approach

    Get PDF
    Recent life events have been implicated in the onset and progression of psychosis. However, psychological processes that account for the association are yet to be fully understood. Using a network approach, we aimed to identify pathways linking recent life events and symptoms observed in psychosis. Based on previous literature, we hypothesized that general symptoms would mediate between recent life events and psychotic symptoms. We analyzed baseline data of patients at clinical high risk for psychosis and with recent-onset psychosis (n = 547) from the Personalised Prognostic Tools for Early Psychosis Management (PRONIA) study. In a network analysis, we modeled links between the burden of recent life events and all individual symptoms of the Positive and Negative Syndrome Scale before and after controlling for childhood trauma. To investigate the longitudinal associations between burden of recent life events and symptoms, we analyzed multiwave panel data from seven timepoints up to month 18. Corroborating our hypothesis, burden of recent life events was connected to positive and negative symptoms through general psychopathology, specifically depression, guilt feelings, anxiety and tension, even after controlling for childhood trauma. Longitudinal modeling indicated that on average, burden of recent life events preceded general psychopathology in the individual. In line with the theory of an affective pathway to psychosis, recent life events may lead to psychotic symptoms via heightened emotional distress. Life events may be one driving force of unspecific, general psychopathology described as characteristic of early phases of the psychosis spectrum, offering promising avenues for interventions
    corecore