94 research outputs found

    Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas

    Get PDF
    Matrix metalloproteinases (MMPs) have been implicated as important factors in gliomas since they may both facilitate invasion into the surrounding brain and participate in neovascularization. We have tested the hypothesis that deregulated expression of gelatinase-A or B, or an activator of gelatinase-A, MT1-MMP, may contribute directly to human gliomas by quantifying the expression of these MMPs in 46 brain tumour specimens and seven control tissues. Quantitative RT-PCR and gelatin zymography showed that gelatinase-A in glioma specimens was higher than in normal tissue; these were significantly elevated in low grade gliomas and remained elevated in GBMs. Gelatinase-B transcript and activity levels were also higher than in normal brain and more strongly correlated with tumour grade. We did not see a close relationship between the levels of expression of MT1-MMP mRNA and amounts of activated gelatinase-A. In situ hybridization localized gelatinase-A and MT1-MMP transcripts to normal neuronal and glia, malignant glioma cells and blood vessels. In contrast, gelatinase-B showed a more restricted pattern of expression; it was strongly expressed in blood vessels at proliferating margins, as well as tumour cells in some cases. These data suggest that gelatinase-A, -B and MT1-MMP are important in the pathophysiology of human gliomas. The primary role of gelatinase-B may lie in remodelling associated with neovascularization, whereas gelatinase-A and MT1-MMP may be involved in both glial invasion and angiogenesis. © 1999 Cancer Research Campaig

    Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

    Get PDF
    Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages

    Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3

    Get PDF
    Dysregulation of matrix degrading metalloproteinase enzymes (MMPs) leads to increased extracellular matrix turnover, a key event in the local invasion and metastasis of many tumours. The tissue inhibitors of metalloproteinases (TIMPs) limit the activity of MMPs, which suggests their use in gene therapy. We have previously shown that overexpression of TIMP-1, -2 or -3 inhibits vascular smooth muscle and melanoma cell invasion, while TIMP-3 uniquely promotes apoptosis. We have therefore sought to determine whether TIMP-3 can inhibit invasion and promote apoptosis in other cancer cell types. Adenoviral-mediated overexpression of TIMP-3 inhibited invasion of HeLa and HT1080 cells through artificial basement membrane to similar levels as that achieved by TIMP-1 and -2. However, TIMP-3 uniquely promoted cell cycle entry and subsequent death by apoptosis. Apoptosis was confirmed by morphological analysis, terminal dUTP nick end labelling (TUNEL) and flow cytometry. The apoptotic phenotype was mimicked by addition of exogenous recombinant TIMP-3 to uninfected cultures demonstrating that the death signal is initiated extracellularly and that a bystander effect exists. These results show that TIMP-3 inhibits invasion in vitro and promotes apoptosis in cancer cell type of differing origin. This clearly identifies the potential of TIMP-3 for gene therapy of multiple cancer types. © 1999 Cancer Research Campaig

    Differential expression and localization of TIMP-1 and TIMP-4 in human gliomas

    Get PDF
    Studies have suggested that an imbalance of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) may contribute to the malignant phenotype of gliomas. In this study, we have undertaken a detailed analysis of expression of the TIMP family in normal human brain and malignant gliomas at both the mRNA and protein level. Reverse transcription-PCR (RT-PCR) analyses of total RNA from surgical tumour specimens revealed unique expression patterns for the 4 members of the TIMP family, with TIMP-1 and -4 showing positive and negative correlations, respectively, with glioma malignancy. By RT-PCR, TIMP-2 and TIMP-3 expression did not change with tumour grade. In situ hybridization localized TIMP-1 to glial tumour cells and also to the surrounding tumour vasculature. TIMP-4 transcripts were predominantly localized to tumour cells, though minor expression was found in vessels. Recombinant TIMP-4 reduced invasion of U251 glioma cells through Matrigel, and U87 clones overexpressing TIMP-4 showed reduced invasive capacity in vitro. TIMP-4, but not TIMP-1, blocked Membrane Type-1-MMP-mediated progelatinase-A (MMP-2) activation in human umbilical vein endothelial cells. The differential expression and localization of individual TIMPs may contribute to the pathophysiology of human malignant gliomas, particularly with regard to tumour vascularization. © 2001 Cancer Research Campaign http://www.bjcancer.co

    The Role of EZH2 in the Regulation of the Activity of Matrix Metalloproteinases in Prostate Cancer Cells

    Get PDF
    Degradation of the extracellular matrix (ECM), a critical step in cancer metastasis, is determined by the balance between MMPs (matrix metalloproteinases) and their inhibitors TIMPs (tissue inhibitors of metalloproteinases). In cancer cells, this balance is shifted towards MMPs, promoting ECM degradation. Here, we show that EZH2 plays an active role in this process by repressing the expression of TIMP2 and TIMP3 in prostate cancer cells. The TIMP genes are derepressed by knockdown of EZH2 expression in human prostate cancer cells but repressed by overexpression of EZH2 in benign human prostate epithelial cells. EZH2 catalyzes H3K27 trimethylation and subsequent DNA methylation of the TIMP gene promoters. Overexpression of EZH2 confers an invasive phenotype on benign prostate epithelial cells; however, this phenotype is suppressed by cooverexpression of TIMP3. EZH2 knockdown markedly reduces the proteolytic activity of MMP-9, thereby decreasing the invasive activity of prostate cancer cells. These results suggest that the transcriptional repression of the TIMP genes by EZH2 may be a major mechanism to shift the MMPs/TIMPs balance in favor of MMP activity and thus to promote ECM degradation and subsequent invasion of prostate cancer cells

    Models of chronic obstructive pulmonary disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a major global health problem and is predicted to become the third most common cause of death by 2020. Apart from the important preventive steps of smoking cessation, there are no other specific treatments for COPD that are as effective in reversing the condition, and therefore there is a need to understand the pathophysiological mechanisms that could lead to new therapeutic strategies. The development of experimental models will help to dissect these mechanisms at the cellular and molecular level. COPD is a disease characterized by progressive airflow obstruction of the peripheral airways, associated with lung inflammation, emphysema and mucus hypersecretion. Different approaches to mimic COPD have been developed but are limited in comparison to models of allergic asthma. COPD models usually do not mimic the major features of human COPD and are commonly based on the induction of COPD-like lesions in the lungs and airways using noxious inhalants such as tobacco smoke, nitrogen dioxide, or sulfur dioxide. Depending on the duration and intensity of exposure, these noxious stimuli induce signs of chronic inflammation and airway remodelling. Emphysema can be achieved by combining such exposure with instillation of tissue-degrading enzymes. Other approaches are based on genetically-targeted mice which develop COPD-like lesions with emphysema, and such mice provide deep insights into pathophysiological mechanisms. Future approaches should aim to mimic irreversible airflow obstruction, associated with cough and sputum production, with the possibility of inducing exacerbations

    Genetic Basis of Inherited Macular Dystrophies and Implications for Stem Cell Therapy

    Get PDF
    Untreatable hereditary macular dystrophy (HMD) presents a major burden to society in terms of the resulting patient disability and the cost to the healthcare provision system. HMD results in central vision loss in humans sufficiently severe for blind registration, and key issues in the development of therapeutic strategies to target these conditions are greater understanding of the causes of photoreceptor loss and the development of restorative procedures. More effective and precise analytical techniques coupled to the development of transgenic models of disease have led to a prolific growth in the identification and our understanding of the genetic mutations that underly HMD. Recent successes in driving differentiation of pluripotent cells towards specific somatic lineages have led to the development of more efficient protocols that can yield enriched populations of a desired phenotype. Retinal pigmented epithelial cells and photoreceptors derived from these are some of the most promising cells that may soon be used in the treatment of specific HMD, especially since rapid developments in the field of induced pluripotency have now set the stage for the production of patient-derived stem cells that overcome the ethical and methodological issues surrounding the use of embryonic derivatives. In this review we highlight a selection of HMD which appear suitable candidates for combinatorial restorative therapy, focusing specifically on where those photoreceptor loss occurs. This technology, along with increased genetic screening, opens up an entirely new pathway to restore vision in patients affected by HMD
    corecore