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Abstract: Tissue inhibitor of metalloproteinases-3 (TIMP-3) maintains a healthy 

extracellular matrix by regulating activity of matrix metalloproteinases (MMP), 

disintegrin-metalloproteinases (ADAM), and disintegrin and metalloproteinases with 

ThromboSpondin-like motifs (ADAMTS) activity. Currently, there is a need for a 

comprehensive understanding of the effects of TIMP-3 on bone quality and quantity. In 

this study, we examined the mechanical, morphological, and compositional properties of  

TIMP-3 knock out (Timp-3-/-) mouse bone. We hypothesize that the lack of TIMP-3 plays 

an important role in maintaining the overall bone integrity. Mechanical properties of 

humeri, lumbar vertebrae and femurs from Timp-3-/- mice were determined using 3-point 

bending, compression, and notched 3-point bending testing, respectively. Morphological 

properties of the humeral cortical and trabecular bone and the caudal vertebrae cortical 

bone were evaluated using micro-computed tomography, while the composition of the 

femoral cortical and trabecular bone was examined using Fourier transform infrared 

spectroscopic imaging. Our results revealed that the mechanical integrity of the Timp-3-/- 

bone is compromised due to changes in its composition, structure, and mechanics. 

Reductions in the yield and ultimate load and stress capacity, and loss in toughness were 

attributed to reduced bone density and thickness, and increased porosity of cortical bone. 

Thin trabeculae were dense, highly connected and closely packed in Timp-3-/- bone. 

Furthermore, altered cortical and trabecular bone mineralization and increased 

compositional heterogeneity were found in Timp-3-/- bone, all being indicative of high bone 

remodelling. In conclusion, this study suggests that TIMP-3 serves a crucial role in normal 

bone development and maintenance. 
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1. Introduction 

Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) is one of the four members of the TIMP 

family of proteins, which primarily inhibits the activity of matrix metalloproteinases 

(MMP) in the extracellular matrix (ECM). The TIMPs are comprised of 184 to 194 amino 

acids, whose N-terminal domain allows the protein to bind to the MMPs with a 1:1 molar 

stoichiometric ratio and prevents these proteinases from cleaving components of the ECM 

[1]. All the TIMPs inhibit MMPs, but they have different specificities. TIMP-1 has been 

shown to be ineffective at inhibiting MMP-14, MMP-16, MMP-19, and MMP-24, while 

TIMP-2 and TIMP-3 are less effective than TIMP-1 at inhibiting MMP-3 and MMP-7 [1]. 

TIMP-3 is particularly effective at inhibiting MMP-1 and -2, and the membrane-bound 

MMPs (MMP-14, -15, -16, -17, -24, and -25) [1, 2]. Among the four TIMPs, TIMP-3 is 

the only one to additionally inhibit a large variety of disintegrin–metalloproteinases 

(ADAM, particularly ADAM-10, -12, -17, -28, and -33) and disintegrin–

metalloproteinases with ThromboSpondinlike motifs (ADAMTS, principally ADAMTS-

1, -4, and -5), which help direct cell functions such as proliferation and migration [1, 3, 4]. 

Due to its role in regulating MMP, ADAM, and ADAMTS activity and its unique property 

to reside exclusively in the ECM, TIMP-3 may strongly influence hematopoiesis and ECM 

remodeling [5]. Studies investigating the effects of TIMP-3 on different types of biological 

tissue have determined that the lack of TIMP-3 results in adverse tissue formation [6] and 

pathological disorders, which include periodontitis [7], oral squamous cell carcinoma [7], 

and Sorsby’s fundus dystrophy [8] in humans. TIMP-3-deficient mice (Timp-3-/-) further 

exhibited increased collagen degradation [9], exacerbated inflammatory process [10], 

osteoarthritis [9], high angiogenesis [6], abnormal vascularization [11], dilated 
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cardiomyopathy [12], increased bronchiole branching [13], severe diabetic symptoms [14], 

failed liver regeneration [10], and tumor growth [6, 12]. Recent studies of Timp-3-/- bone 

found that they are small in size, with compromised mass and structure, and increased 

number of osteoclasts [15].  

This body of research shows that TIMP-3 is crucial for maintaining tissue integrity 

and suggests that the lack of TIMP-3 can adversely affect skeletal ECM, possibly by 

disrupting the process of bone remodeling due to unregulated MMP, ADAM, and 

ADAMTS activity. However, there is a need for a more comprehensive understanding of 

the influence of TIMP-3 on bone quality and integrity. Specifically, how is TIMP-3 

deficiency affecting the mechanics of bone? How are structure and composition of TIMP- 

3-deficient bone contributing to its mechanical properties? How are these affecting the 

function of bone? In this study, we analyze the bones from the Timp-3-/- mouse model 

[16], measure bone strength in compression and bending, and bone fracture toughness at 

the whole organ level. To explain changes in the mechanical properties of the Timp-3-/-

bone, we examine its morphology at the microscale length and determine the contribution 

of TIMP-3 to the bone mineral and collagen arrangement at the tissue level. Understanding 

how mechanical, structural, and compositional properties of cortical and trabecular bone 

change in Timp-3-/- mice provide insights into the role of TIMP-3 in bone development and 

maintenance. 

2. Materials and Methods 

Bones from 8-week-old female mice genetically deficient in TIMP-3 (Timp-3-/-, N = 9) and 

their wild-type (WT) C57BL6 (N = 6) littermates were analyzed [16]. Only fresh frozen 

mice were available at the beginning of this study. They were obtained from a local colony 
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that was maintained in accordance with the Home Office (UK) guidelines for the care and 

use of laboratory animals. Mice were stored at −20 °C after euthanasia. Prior to testing, 

bones were dissected from the fresh frozen mice, cleaned of soft tissue, wrapped in 

physiological solution (PBS)-soaked gauze, and stored at 25 °C until testing (less than 12 

h). 

 

Bone Strength 

The right humeri and L5 vertebrae from WT and Timp-3-/- mice were loaded to fracture in 

three-point bending and compression, respectively, using a 50 N load cell (Instron 5866, 

Norwood, MA) [17]. Humeri were loaded at their mid-diaphysis in the anterior–posterior 

direction with a displacement rate of 1 μm s−1 at 25 °C in PBS-irrigated conditions. Force–

deflection curves were analyzed with a custom program (Matlab, MathWorks) to measure 

the bone stiffness (S, slope of the linear elastic deformation), yield force (Fy, force limit 

between the elastic and plastic deformation, defined as the intersection point between the 

0.2% linear offset curve and the force–displacement curve), ultimate force (Fu, maximum 

force), work to yield (Wy, area under the force–displacement curve up to the yield point), 

and work to fracture (Wf, area under the force–displacement curve up to bone rupture) [17]. 

 

Humeri 

Prior to mechanical testing, geometrical parameters, i.e., mid-humeral diameter (D), cross-

sectional area (CSA), and second moment of inertia (Imin) were measured from 

microcomputed tomography (μCT) images of the humeral middiaphysis (Table 1). Cortical 

bone was scanned along the long axis of humeri using SkyScan1172 (5 μm voxel size, 
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55 kVp, 0.36 degrees rotation step (180 degrees angular range), 200 μA current, 1600-ms 

exposure, performed in PBS-wet gauze). The measured geometrical parameters were used 

to calculate the bending stress–strain curves for the humeri, where the stress was: 

  

where F being the force, L the loading span, d the anteroposterior diameter, and Imin the 

second moment of inertia from the lateromedial axis (πd4⁄64); and the strain: 

 

where δ being the deflection of the bone due to bending [17]. Stress–strain curves were 

analyzed with a custom program (Matlab, MathWorks); and the bone elastic (Young’s) 

modulus (E, slope of the linear elastic deformation), yield stress (σy, stress limit between 

elastic and plastic strain), and ultimate stress (σu, maximum stress) were calculated using 

the following equations [17]: 

 

where c is the radius along the anterior–posterior axis from the humeri cross-sectional 

centroid. 

 

Vertebrae 

Following dissection, the body and posterior elements of the L5 vertebrae were separated 

using a thin-steel razor blade coated in 0.05-μm diamond suspension. A dermal tool was 
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then used to make the cranial and caudal ends of the vertebral body flat and parallel for 

compressive testing. The vertebrae were soaked in PBS and then placed in the compression 

rig where they were loaded in the cranial–caudal direction. The vertebral force–deflection 

curves were analyzed with the same custom program (Matlab, MathWorks) used to analyze 

the curve for the humeri; and bone stiffness, yield force, ultimate force, work to yield were 

measured [17]. The length of each vertebra was measured with a caliper prior mechanical 

testing, and the cross-sectional area (CSA) acquired using an environmental scanning 

electron microscope (ESEM) imaging with backscattering (JEOL JSM-6380LV) in low 

vacuum mode (pressure of 15 Pa and 15 kV) (Table 1). The CSA was used to calculate the 

compressive stress–strain curves for the vertebrae, where the stress was 

 

where F being the force and Ao the CSA, and the strain was 

 

where Δl is the change in vertebral length and lo is the original length. 

The elastic modulus, yield, and ultimate stress were calculated as follows [17]: 
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Fracture Toughness 

Left femurs were micro-notched on the posterior surface of the mid-diaphysis with a razor 

blade irrigated with 0.05-μm diamond suspension, and tested in a three-point bending 

configuration at a displacement rate of 1 μm/s until fracture, while constantly maintained 

under PBS hydrated conditions (Instron 5866, Norwood, MA) [18–20]. After a complete 

break, the fracture surface of the bones was analyzed using an ESEM with simultaneous 

backscattering (Hitachi S-3400N) in low vacuum mode (pressure of 35 Pa and 25 kV). 

From these images, geometric characteristics of the bone fracture surface (D, cortical 

thickness (t), CSA and Imin) at the mid-diaphysis were estimated (Table 1). Bone toughness 

was estimated with the instability method, thus accounting for the contributions to the 

toughness of both crack initiation and growth. Fracture toughness was computed using the 

stress-intensity solution for a through-thickness crack in a circular thick-walled cylinder: 

 

where Fb is a geometric constant for thick-walled cylinders, Pinst is the load at instability, 

S is the span width, Rm, Ri, and Ro are the mean, inner and outer radius of the bone, 

respectively, and θinst is the instability half-crack angle [18–20]. 

 

Micro‑Computed Tomography 

Cortical and trabecular bone were imaged using μCT imaging. Scans were taken along the 

long axis of the left humeri and CA6 vertebrae using a Scanco μCT 35 system (Scanco 

Medical, Brüttisellen, Switzerland). Scans were performed in 70% ethanol using 6 μm 

voxel size, 55 KVp, 0.36° rotation step (180° angular range), and a 400-ms exposure per 
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view. The Scanco μCT software (HP, DECwindows Motif 1.6) was used for 3D 

reconstruction and viewing of the images. After 3D reconstruction, volumes were 

segmented using a global threshold of 0.4 g/c. In cortical bone, we analyzed the total 

volume (TV), the bone volume (BV), the bone volume density (BV/TV), porosity (Ct.Po 

= pores volume/TV), cortical area fraction (Ct.Ar/Tt.Ar), mean cortical thickness (Ct.Th), 

the second moment of inertia along the major and minor axis (Imax and Imin), the polar 

moment of inertia (J), tissue mineral density (TMD), and bone mass (TMD/Ct.Po) [21, 22]. 

For the trabecular bone, BV, TV, BV/TV, connectivity density (Conn-D), trabecular  

number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and TMD 

were calculated [21]. 

 

Fourier Transform Infrared Imaging Spectroscopy 

The composition and distribution of organic and inorganic components of the bone 

extracellular matrix were evaluated using Fourier transform infrared imaging (FTIRI) 

spectroscopy. Right femurs were fixed in 90% ethanol and embedded in 

polymethylmethacrylate (PMMA). Spectra were collected in transmission with a spectral 

resolution of 4 cm−1 and a spatial resolution of 6.25 μm using a Perkin Elmer Spotlight 

Imaging system from areas of ~300 μm x 500 μm. Sections of 2 μm thickness were scanned 

to collect five images from intact cortical and five images from trabecular bone. The 

captured spectra were processed using ISYS software (Spectral Dimensions, Olney, MD), 

and the atmospheric H20 and CO2 interference were automatically subtracted from all 

spectra [23, 24]. A linear baseline from 850 to 1850 cm−1 was used to normalize the spectra, 

then PMMA contributions were spectrally subtracted, and the pixels with absorbance 
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values at 1728 cm−1 where masked out using ISYS software. For both cortical and 

trabecular bone, five bone compositional parameters were examined: the mineral-to-matrix 

ratio, the carbonate-tophosphate ratio, the mature-to-immature collagen enzymatic 

crosslinks ratio, the mineral crystallinity, and the acid phosphate substitution. Second 

derivative spectra were used to define the location of the peaks for intensity calculations. 

Based on these results, collagen maturity was defined by the relative intensity of 1660/1690 

cm−1 subbands based on the baseline amide I and amide II 1520–1720 cm−1, crystallinity 

by the relative intensity of 1030/1020 cm−1 subbands, and the acid phosphate substitution 

by intensities of 1028/1096 cm−1 subbands. Mineral-to-matrix ratios were estimated by 

considering the areas under the baselined peak from 915 to 1215 cm−1 over the amide I 

area (1596–1720 cm−1); carbonate-to-phosphate ratio was instead the area under the peak 

from 850 to 895 cm−1/915–1215 cm−1. The heterogeneity of these parameters was also 

analyzed [23–25]. 

 

Statistical Analysis 

The normal distribution and homogeneity of variance of each variable was analyzed using 

the Shapiro–Wilk test and the Levene’s test, respectively (SPSS, IBM, Somers, NY). Bone 

strength and toughness, and morphological measures in Timp-3-/- and WT bone were 

compared using the Student’s independent t-test for variables with normal distributions and 

the Mann–Whitney rank test for variables with non-normal distributions. Measurements 

obtained from the FTIRI analysis were evaluated using analysis of variance (one-way 

nested ANOVA), as we had five measurements per bone. P-values smaller than 0.05 were 

considered significant. 
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Results 

Bone Strength 

The humeri and the L5 vertebrae from Timp-3-/- mice exhibited significantly lower yield 

load, ultimate load, work to yield, yield stress, and ultimate stress compared to their WT 

counterparts (Table 2). Additionally, the Timp-3-/- humeri exhibited reduced stiffness. No 

statistically significant difference between Timp-3−/− and WT mouse bone was found in 

the elastic modulus. 

 

Fracture Toughness 

Fracture toughness testing revealed that the toughness of the Timp-3-/- femurs was reduced 

by a third when compared to the healthy WT femurs (Table 2). 

 

Micro-Computed Tomography 

Timp-3-/- bone had a different morphology compared to WT bone (Tables 3, 4). Timp-3-/- 

cortical bone of both humeri and vertebrae exhibited significantly lower TV, BV, BV/TV, 

Ct.Ar/Tt.Ar, Ct.Th, Imax, Imin, and J, but a greater Ct.Po, compared to WT bone (Table 3). 

Timp-3-/- trabecular bone from the humeri had a significantly lower TV, Tb.Th, and Tb.Sp 

compared to normal counterparts, with a greater BV/TV, Conn-D, and Tb.N, than in WT 

bone (Table 4). Timp-3-/- cortical and trabecular bone exhibited lower TMD in the humeri 

but not in the vertebrae. Bone mass in the Timp-3-/- humeri and vertebrae was also reduced 

when compared to the corresponding WT bone. 
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Fourier Transform Infrared Imaging Spectroscopy 

Analysis of the FTIRI images comparing the Timp-3-/- bones to their respective 

counterparts revealed a significantly lower carbonate-to-phosphate ratio and a significantly 

greater acid phosphate level in the Timp-3-/- cortical and trabecular bone (Fig. 1; Table 5). 

Timp-3-/- trabecular bone also showed an increase in the enzymatic collagen crosslinking 

ratio. 

Heterogeneity of the collagen crosslinking ratio was significantly higher in Timp-3-/-  

cortical and trabecular bone (Table 5). Furthermore, Timp-3-/-  trabecular bone exhibited 

a significantly greater heterogeneity of the carbonate-to-phosphate ratio and a significantly 

lower heterogeneity of the mineral crystallinity compared to WT bone. Neither the mineral-

to-matrix ratio nor its heterogeneity differed significantly when the two genotypes were 

compared. 

 

Discussion 

In this study, we investigated the influence of the TIMP-3 gene on bone quality and 

mechanical integrity of the skeleton of the Timp-3-/- mouse model. Our results prove that 

TIMP-3 is fundamental for regulating and maintaining the correct composition, structure, 

and mechanics of bone. Understanding how TIMP-3 affects bone integrity is of a great 

biological and clinical interest for regulating skeletal homeostasis and development. 

Our testing revealed compromised mechanical properties of the long bones and vertebrae 

of the Timp-3-/- mice. Inferior yield and ultimate loads were found in Timp-3-/-bone. Also, 

stiffness, work to yield, yield and ultimate stress, and fracture toughness were reduced in 



14 

 

Timp-3-/- long bone. Young’s modulus values for the Timp-3-/- bone demonstrated a 

tendency to decrease, but the high variance of these values resulted in no statistical 

significance compared with WT bone. The decrease in the mechanical properties of bone 

we observed in this study is in agreement with previous works that found compromised 

tissue quality and function in the respiratory [26], cardiovascular [27], liver [10], and 

musculoskeletal tissue of Timp-3-/- mice [15].  

Alterations in the structure and composition of the Timp-3-/- bone mice can explain the 

deficiencies observed in the mechanical properties of the Timp-3-/- bone. Our μCT analysis 

of the bone architecture and mineral density revealed that TIMP-3 deficiency alters both 

cortical and trabecular bone structure and compromises bone mass. The morphological 

analysis of Timp-3-/- cortical bone revealed a significant decrease in the bone volume, with 

thinner cortices and higher canal porosity compared with WT bone. Timp-3-/- bones were 

smaller, with a reduced cross-sectional area and altered geometry (Imax, Imin, and J), in 

agreement with previous studies conducted on the tibiae of the same mouse strain [15]. The 

increase in the Timp-3-/- cortical bone porosity due to the vascular channels is also in 

agreement with the increase in angiogenesis typical of these bones [6]. TIMP-3, as all the 

other TIMPs, is a strong inhibitor of angiogenesis. In particular, TIMP-3 binds directly to 

VEGF receptor2, blocking the action of VEGF on endothelial cells [1]. Furthermore, 

MMP-9, regulated by TIMP-3 and produced by osteoclasts, has been identified as a 

stimulator for angiogenesis in the bone microenvironment [28]. Our results, therefore, 

suggest that a deficiency in TIMP-3 may directly block inhibition of angiogenesis and 

further generate an excess of MMP-9, which in turn results in increased bone angiogenesis 

and vascularization, thus having an effect on the antiangiogenic activity of the other 
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TIMPs. High intracortical vascular porosity is known to reduce bone resistance to fracture 

[29] by increasing the stress concentrations around the holes within the bone [22] and by 

increasing the velocity of crack propagation [19]. Therefore, high bone porosity reduces 

the mechanical properties of bone and helps explain the decrease in fracture toughness 

observed here in the Timp-3-/- femurs.  

Prior research on bone demonstrated that cortical thinning and increased porosity occur 

when the rate of bone remodeling is altered [30, 31]. In agreement with that, a recent 

histological analysis of Timp-3-/- bone has found an increased osteoclasts number in TIMP-

3-deficient bone, with no changes in the osteoblasts number, and no changes in the growth 

plate area [15]. Thus, it is possible that due to the lack of TIMP-3 in the bone, there is an 

unregulated MMP, ADAM, and ADAMTS activity in the tissue that leads to an increase in 

bone remodeling, which may, in turn, decrease cortical thickness and increase bone 

porosity. Although we did not directly measure bone remodeling in this study, mainly 

because only fresh frozen mice were available for this study, the possible increase in bone 

remodeling of the Timp-3-/- bone is suggested by the changes in composition of these bones 

analyzed in this study. Our FTIRI analysis of the Timp-3-/- femurs indicates that their 

cortical and trabecular bone has less carbonate, more acid phosphate, and a more 

heterogeneous distribution of mature-to-immature enzymatic collagen crosslinks. All these 

parameters are indicative of increased remodeling in the bone [32–34]. High bone 

remodeling indeed reduces the carbonate content in the bone, as carbonate is typically 

where the tissue is not turned over [32], and increases the acid phosphate in the areas of 

new bone formation and mineral deposition [35]. This is further confirmed by the increase 

in the heterogeneity of the collagen crosslinking ratio, previously associated with increased 
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bone remodeling [36]. Carbonate substitutes for phosphate ions in bone (B-type carbonate); 

thus, the phosphate environment of the mineral is distorted [37]. An increase in crystallinity 

(crystal size and perfection) would be expected to parallel a loss of carbonate; however, no 

statistically significant change was seen (1.15 vs 1.16), perhaps because the crystallinity 

parameter, based on intensities, is less sensitive than the peak area ratio used for carbonate-

to-phosphate ratio. Alternatively, since increased acid phosphate substitution (due to new 

bone formation) would decrease crystallinity, combined these two changes contribute to 

the constant crystallinity value. Our study thus suggests that an increased remodeling in 

the Timp-3-/- cortical bone creates geometric changes at the bone nanoscale level with more 

immature (smaller and less perfect) hydroxyapatite crystals and high tissue heterogeneity, 

which in turn affect the bone architecture at the microscale level and reduce the mass, 

strength, and toughness of the bone at the organ level. Also, at the trabecular level, changes 

in the composition of the Timp-3-/- bone result in the altered micro-architecture, 

characterized by a reduced total bone volume with an increased volume density and more, 

thinner, highly connected, and closely packed trabeculae: a typical configuration of a bone 

with high remodeling. Interestingly, the trabecular configuration we observed in the Timp-

3-/- mice is not due to improper growth plate cartilage degradation [15] rather our results 

suggest collagenases are predominantly responsible for altered Timp-3-/- bone architecture 

through imbalanced bone remodeling. 

Previous studies examining bone matrix in the presence of increased MMP-1, -2, -8, -9, -

14, and -16 activities found a higher bone remodeling due to excessive collagen 

degradation, generating skeletal abnormalities and deformities [28, 38–41]. Both ADAMs 

and ADAMTS could also influence the rate of bone remodeling [42–44]. In particular, 
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ADAM-10 and ADAM-12 play a role in bone in influencing human peripheral blood 

mononuclear cells to differentiate into osteoblasts and osteoclasts [42]. Inhibition of 

ADAM-15 activity can increase osteoblast proliferation and function and result in higher 

bone mass [43]. Furthermore, ADAMTS-18 deletion significantly correlated to increased 

osteoclastogenesis and osteoblastogenesis [44]. It is also possible that common substrates 

between the TIMPs allow for other TIMPs to regulate metalloproteinases activity in 

absence of TIMP-3. For example, the increased bone formation with highly connected and 

closely spaced trabeculae we observed in the Timp-3-/- mice was previously found in the 

skeleton of MMP-13 Null mice [45]. MMP-13 plays a role in remodeling the cartilage   

matrix in endochondral ossification, vascularization, and chondroclast recruitment, and the 

change observed in trabecular bone has been related to improper cartilage degradation with 

hypertrophic chondrocytes and osteoblasts due to the lack of MMP-13 [39, 45]. With a 

TIMP-3 deficiency, we would expect instead an overabundance of MMP-13. Thus, it is 

possible that either TIMP-3 is less effective than other TIMPs in regulating MMP-13 or 

that the actions of TIMP-3 are taken over by other TIMPs and without this redundancy, the 

phenotype of the Timp-3-/-mice could even be more severe. Future studies are required to 

elucidate the relationship between the TIMPs and MMPs, ADAMs, and ADAMTSs, to 

reveal which enzymes are directly involved in the changes observed in the Timp-3-/- bone. 

This study has some limitations that need to be pointed out. First, because the animals were 

not double-labeled, we were unable to do histomorphometry to confirm the altered 

remodeling. Secondly, we did not measure the composition of all bones (but only femurs), 

nor of an entire bone, but rather selected intact cortical bone and intact trabeculae and 

considered their averages and distributions, rather than a unique site (e.g., adjacent to newly 
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deposited bone). This, in a sense, is analogous to measuring the chemical composition of 

multiple aliquots of cortical or cancellous bones from several different animals, thus the 

need to use a nested statistical analysis to account for measurements from the same bones. 

 

Conclusions 

This study demonstrates that TIMP-3 plays a fundamental role in determining and 

maintaining bone quality and integrity, regulating both cortical and trabecular bone. The 

lack of TIMP-3 generates smaller bones with thin and highly porous cortex and dense, 

highly connected and closely packed, thin trabeculae. Composition is also altered in Timp-

3-/- bone, with smaller, immature, and less perfect crystals. This compromised structure and 

composition results in the inferior mechanical properties of the Timp-3-/- bone. This study 

therefore proves that TIMP-3 is a critical component for maintaining healthy bone, 

enabling its matrix to properly mature, generate, and maintain optimal compositional, 

structural, and mechanical properties. Our results open the way to further studies for a 

thorough investigation of the relations between TIMP-3, and MMP, ADAM, ADAMTS 

activity, and bone properties, and their relation with the compromised quality of other 

tissue in Timp-3-/- mice. These future studies will eventually lead to the development of 

treatments for diseases related to abnormal TIMP-3, MMPs, ADAMs, and ADAMTSs 

activity, with the ultimate aim to improve tissue quality and quantity, and regain healthy 

mechanical properties in bone as well as in other body tissues. 
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Figures 

Figure 1: FTIRI of cortical and trabecular bone of one representative femur from WT and 

one from Timp-3−/− bone (* indicates p < 0.05, ** indicates p < 0.01, and *** indicates p 

< 0.001) 
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Table 1: Cortical bone geometric properties of the humeri, L5 vertebrae, and femurs of 

WT and Timp-3−/− mice indicate that Timp-3−/− bones are smaller than their WT 

counterparts (* indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001) 

Geometric parameter WT (N=6) 

Humeri 

Diameter (mm) 1.47 ± 0.12 

Cross-sectional area (mm2) 1.04 ± 0.12 

Second moment of area (mm4) 0.17 ± 0.03 

L5 Vertebrae 

Length (mm) 2.55 ± 0.30 

Cross-sectional area (mm2) 2.34 ± 0.79 

Femurs 

Diameter (mm) 1.62 ± 0.06 

Average thickness (mm) 0.26 ± 0.02 

Cross-sectional area (mm2) 1.07 ± 0.09 

Second moment of area (mm4) 0.16 ± 0.02 0.12 
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Table 2: Mechanical and material properties of WT and Timp-3−/− mice cortical bone 

Mechanical parameter Cortical bone 

Humeri L5 Vertebrae 

WT (N=6) Timp-3−/− (N=9) WT (N=6) Timp-3−/− (N=9) 

Stiffness (N/mm) 94.32 ± 11.10 43.85 ± 13.73*** 90.28 ± 34.08 63.78 ± 31.94 

Yield load (N) 10.40 ± 2.05 4.50 ± 1.28*** 10.35 ± 2.37 5.36 ± 2.56** 

Ultimate load (N) 13.33 ± 1.52 6.42 ± 1.39*** 12.92 ± 2.50 6.39 ± 3.04** 

Work to yield (mJ) 0.65 ± 0.25 0.25 ± 0.10*** 0.70 ± 0.32 0.27 ± 0.19** 

Work to fracture (mJ) 2.65 ± 0.67  2.20 ± 0.99 - - 

Elastic modulus (GPa)  8.66 ± 1.55 6.60 ± 2.69 0.11 ± 0.07 0.07 ± 0.03 

Yield stress (MPa) 102.80 ± 12.20 59.85 ± 15.84*** 4.67 ± 1.42 2.52 ± 1.20** 

Ultimate stress (MPa) 133.12 ± 15.37 86.48 ± 19.35*** 5.93 ± 1.42 3.00 ± 1.41** 

 

Femurs 

WT (N = 6) Timp-3−/− (N=9) 

Fracture toughness (Mpa √ 

m) 6.36 ± 0.68 4.28 ± 0.31** 

Mechanical properties of bone were found to be altered by TIMP-3 deficiency as both the Timp-3−/− 

humeri and the L5 vertebrae exhibited significantly reduced yield and ultimate load, work to yield, yield 

stress, and ultimate stress measurements 

 

The stiffness of the Timp-3−/− humeri was also significantly reduced. The Young’s modulus measurements 

were instead not significantly different, mostly because of high variance within the groups 

 

The fracture toughness of the Timp-3−/− bone, measured in terms of stress intensity, Kc, was significantly 

reduced, indicating that the Timp-3−/− bone had a reduced resistance to crack propagation 

(* indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001) 
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Table 3: Structural analysis of the cortical bone in the humeri and CA6 vertebrae of WT 

and Timp-3−/− bone indicates that the TIMP-3 deficiency alters the structural properties of 

cortical bone 

μCT parameter Cortical bone 

Humeri Vertebrae 

WT (N = 6) Timp-3−/− (N = 9) WT (N=6) Timp-3−/− (N = 9) 

TV (mm3) 1.41 ± 0.08 1.11 ± 0.07*** 1.20 ± 0.11 1.01 ± 0.09* 

BV (mm3) 0.83 ± 0.04 0.6 ± 0.04*** 0.79 ± 0.06 0.56 ± 0.04*** 

BV/TV (%) 59 ± 1 54 ± 2*** 66 ± 2 56 ± 3*** 

Ct.Po (%) 5.04 ± 1.42 8.51 ± 0.51** 7 ± 1 16 ± 5** 

Ct.Ar/Tt.Ar (%) 59 ± 1 54 ± 2*** 66 ± 2 56 ± 3*** 

Ct.Th (mm) 0.20 ± 0.00 0.15 ± 0.01*** 0.18 ± 0.01 0.11 ± 0.02** 

Imax (mm4) 0.09 ± 0.01 0.05 ± 0.07*** 0.13 ± 0.03 0.09 ± 0.02** 

Imin (mm4) 0.06 ± 0.01 0.03 ± 0.01*** 0.12 ± 0.02 0.07 ± 0.01*** 

J (mm4) 0.14 ± 0.01 0.08 ± 0.01*** 0.26 ± 0.05 0.16 ± 0.03** 

TMD (mg/cm-3) 1124.91 ± 4.83 1063.95 ± 16.41*** 938.49 ± 12.62 892.49 ± 72.33 

Bone Mass (mg) 236.50 ± 56.35 125.35 ± 7.83** 132.48 ± 12.07 62.08 ± 25.64*** 

 

Both the Timp-3−/− humeri and the CA6 vertebrae had reduced total volume (TV), bone volume (BV), bone 

volume density (BV/TV), thickness (Ct.Th), moments of inertia (Imax, Imin, J), tissue mineral density 

(TMD), and overall bone mass  

 

Both types of bones in TIMP-3 deficient mice also exhibited higher cortical porosity (Ct.Po)  

 

* indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001 
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Table 4: Structural analysis of the trabecular bone in the humerus of WT and Timp-3−/− 

bone 

μCT parameter Humeral trabecular bone 

WT (N = 6) Timp-3−/− (N = 9) 

TV (mm3) 1.57 ± 0.05 1.16 ± 0.18*** 

BV (mm3) 0.19 ± 0.02 0.16 ± 0.03 

BV/TV (%) 12 ± 1 14 ± 1* 

Conn-Dens. (mm-3) 294.13 ± 38.84 552.83 ± 113.67*** 

Tb.N (mm-1) 4.47 ± 0.32 6.15 ± 0.67*** 

Tb.Th (mm) 0.04 ± 0.00 0.03 ± 0.00*** 

Tb.Sp (mm) 0.23 ± 0.02 0.16 ± 0.02*** 

TMD (mm-3) 914.41 ± 8.24 873.81 ± 18.99** 
Bone volume density (BV/TV), connectivity density (Conn.Dens), and trabecular number (Tb.N) were 

significantly increased in the trabecular bone of the TIMP-3-deficient mice 

 

Timp-3−/− trabecular bone had also a significant decrease in the total volume (TV), trabecular thickness 

(Tb.Th), trabecular separation (Tb.Sp), and tissue mineral density (TMD) 

 

* indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001 

 

 

Table 5: FTIR parameters for cortical and trabecular bone of WT and Timp-3−/− femurs  

FTIR parameter Cortical bone Trabecular bone 

WT (N=6) Timp-3−/− (N = 9) WT (N=6) Timp-3−/− (N = 9) 

Mineral/matrix ratio 6.66 ± 0.56 6.97 ± 0.89 5.57 ± 0.45 5.87 ± 0.41 

Carbonate/phosphate ratio (10−3) 6.20 ± 0.50 5.50 ± 0.80* 5.90 ± 0.80 4.30 ± 0.50*** 

Crosslink ratio 3.77 ± 0.13 3.87 ± 0.19 3.96 ± 0.20 4.35 ± 0.24** 

Crystallinity 1.20 ± 0.03 1.20 ± 0.04 1.15 ± 0.02 1.16 ± 0.03 

Acid phosphate 0.49 ± 0.02 0.52 ± 0.05* 0.63 ± 0.04 0.71 ± 0.05** 

Mineral/matrix heterogeneity 2.14 ± 0.59 2.27 ± 0.61 2.51 ± 0.49 2.81 ± 0.65 

Carbonate/phosphate 

heterogeneity (10−3) 2.10 ± 0.1 2.20 ± 0.20 2.60 ± 0.30 3.30 ± 0.40*** 

Crosslink heterogeneity 0.42 ± 0.03 0.55 ± 0.10** 0.50 ± 0.08 0.85 ± 0.30* 

Crystallinity heterogeneity (10−2) 12.97 ± 1.53 12.42 ± 2.05 19.07 ± 1.71 16.72 ± 0.81** 
Measurements of the WT and Timp-3−/− cortical bone revealed that there was a 12.7% reduction of carbonate substitution in the 

hydroxyapatite crystals, a 7.4% increase in the amount of acid phosphate, and a 23.5% increase in the heterogeneity of the 

mature-to-immature collagen crosslinking ratio in the Timp-3−/− bone matrix. The FTIRI measurements of the WT and Timp-

3−/− trabecular bone demonstrated a 37.2% decrease in carbonate substitution in the hydroxyapatite crystals, an 8.8% increase 

in the collagen enzymatic crosslinking ratio, and an 11.1% increase in the acid phosphate ratio 

 

Analysis of the compositional heterogeneity of Timp-3−/− trabecular bone demonstrated a 21.2% increase in the carbonate-to-

phosphate ratio heterogeneity, a 41% increase in the collagen enzymatic crosslinking ratio heterogeneity, and a 14.1% 

decrease in the crystallinity heterogeneity of the hydroxyapatite crystals in the matrix 

 

* indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001 

 




